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Yuan ShI

Supervisor: Noah Prywes

Concurrent systems are typically large and complex, requiring

long development time and much labor. They are, therefore, prim
candidates for simplification and automation of the design and

programing process. Their major application areas include real time

system, operating systems and cooperative comptation by a nuer of

independently developed geographically dispersed subsystems. New

applications are emrging with the trends towards wide usage of

personal computers connected in a network and towards use of parallel

processing in supercomputer architectures.

The prime contribution of this dissertation is the creation of a

pZogZaing style and an enviromant that allows the human designers

to develop an Implementation independent, very high level functional

view of the concurrent systemS. The translation of this view into a

concurrently operating system is performed automatically. There is an

emphasis on the human engineering aspects of the designer - computer

interactions. The designers specify the problem through declaring

variable structures and composing equations which relate the

variables. Thus the specification is entirely declarative and

assertive, without reference to its computerization. The designers

partition the overall specification into modules which are each

defined independently. These modules also becme candidates for being
computed concurrently. Each module consists of a subset of the

variable declarations and equations. The designers view the

concurrent system statically, as if all input and output data are

0 available a priori, and the equations provide mathematical

relationships among the data. The semantics of submitting the

- .. .- " ..



specification to the computer is to have the computer give appropriate

values to variables that all the equations are true. Excluded are

such dynamic implementation concepts as sequences of program events,

synchronization, exchanges of messages and relative timing. To

accomodate the large size of typical systems, the methodology

supports independence in specifying and testing individual modules.

To aid debugging and attain reliability, language processors detect

inconsistency and incompleteness errors in both the individual modules

and in the global system. The translation from the specification into

a respective computation by an object computer architecture is

performed by the language processors. The entire design, prototyping

and simulation of a system can be performed on a host computer and

eventually moved to an object distributed computer system which is put

into productive operation.

The dissertation describes an investigation of this approach

using as the object computer architecture a modern distributed system

consisting of interconnected sequential processes, each operating

under a multiprogramming timesharing operating system.

The designers of a concurrent system interact with automatic

systesm on two levels: On the global level, the .gnZ giwan accepts

as input a graph of the network of subsystem, modules and files. It

verifies the validity of interfaces and implements the network by

generating command language program that set up comiunications and

optimize parallelism among modules. The modules are Eecuted undermultpara-'- tzime or

IatiI time sharing operating systems in respective

sequential processors in a network.

On the local level, the SM Q±1mz accepts as input an

individual module specification. it perfozm checking of oompletenees

and consistency of variables and equations and generates an optimi ad

sequential program in a high level language (P1W).

The above two system interact in checking the integrity of tvie

specified system and generating the implementation program. They

have been implemented in PWI, in the environment of Digital's VAX/VM

-2-



operating system. Thus, automatic program design and generation

methodology is used to translate the very high level specification

Vinto an efficient customized concurrent computation in a chosen

environment.

One contribution of the dissertation of the dissertation is the

exploration of the generality and power of this style of application

systems development. This style of programming is novel and there has

- - been little experience with it. The overall methodology is

illustrated through two characteristic examples: a resource

allocator, widely used in real-time systems, and a cooperative

development of econometric models in a distributed environment. The

examples present the new style of prograuming.

The other contributions of the dissertation are in the solutions

to specific concurrent system design problems. This consisted of

employing new concepts and algoritm. The implementation of a

specification is based on communication of messages among concurrent

processes. This requires checks of the specification to alert the

-- . designer to the existence of inconsistencies and automatic design of

-" implicit synchronization and prevention of- deadlocks. The entire

concurrent system must cooperate in the distributed computations,

especially in initiation and termination of system-wide iterative

computations.

The dissertation consists of three parts. Part r presents the

new style of specifying concurrent systems, as well as high level

descriptions of automatic design and programing environment. Part I!

documents the design of the Configurator. part III documents the

* modifications to the previously developed NODEL compiler which were

. necessary for concurrent operation of programs and comunications

0

among the programs.

-
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0P1'ER 1

1.1 1H PROBLEM AND TH OVERALL APPF40AH

Concurrent computation is widely used in operating systems and in

real time systems. There are novel application areas, such as

robotics, which require coordination of a numer of activities. It is

also increasingly used in distributed processing systems for

cooperative computation by gmographically dispersed users. The

greatest potential for use of Concurrent computation is in the

mrging Parallel computer architectures CArvind, 63; Dennis, SO;

Gard,62; Smith,79; Treleavan, 82]. Programing of concurrent

computing has proven to be very complex and prone to errors.

Experience indicates that it consumes enormous amount of time for

pra development and maintenance. The difficulties encountered lie

partly in the large size of typical concurrent systems, but more

importantly in the need for the progremer to take into account

sensitive interactions between parallel stream of program events.

For these reasons, making concurrent I easier has received

much attention. A number of proqraminq languages in the style of

conventional high level languages have been developed (Brinch, 79;

Hoare, 76; Holt, 76; Milner, 60]. More recently a new type of

language, variously called d.IID QlgnAl, I mD IXJ, IggI or

dalallm, has been proposed for use in the new parallel computer

architectures (Ackerman, 62; McGraw, 92; Boffan, 62; Arvind, 79;

mamarithan, 93; Backus, 79; Shapiro, 63]. However, in these

-2-
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languages, the programmer still needs to visualize the solution of the

problem in terms of stream of data, computations by processors and

commnications among processes. This level is considered here as

still too low.

A very high level approach to this problem is described in this

dissertation. It involves use of a mathematical specification of a

computation which does not require operational semantics. It consists

only of declarations of structures of variables and equations that

relate the variables. Such a specification is composed without regard

to, or even knowledge of, the underlying implementation of the

computation. The translation of a specification into a computation on

an object computer architecture is performed automatically. The

computer architecture selected here to demonstrate the approach is

that of a modern distributed processing system consisting of

interconnected sequential processors, each run under a

multiprogramming timesharing operating system. The translation of the

specification into concurrent program which communicate with each

other is performed by two translating systems: a Q which

implements the global aspects through generating command language

programs, and a M QMNLJ which implements the local aspects

through generating high level language program (PVI) for individual

processes. The translators use the VAX/VMS operating system and

communication facilities, as well as a conventional PVI programming

language compiler. The selection of the VAX/VM environment has been

purely for demonstrating the approach. The methodology should be

equally applicable to other computer architecture.

The above two translating systems offer the user assistance in

debugging and validating of the concurrent system. The verification

of a concurrent system poses many theoretical and practical problems.

Several specification languages and methods have been proposed for

verification of concurrent systems (Zave, 84; Lauer, 79; Chen, 83;

Parnas, 74; Pnueli, 791. Such specifications would require in

typical practical applications a large amount of labor. Composing

." - . % . . " . °oI" •. . . • " " , . % . . °. . . . . . ." " ""° " -i ° ' '
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such a specification is also prone to making numerous errors. Also

all-automatic verification is not possible and human analysis and

assistance is necessary, requiring high level of expertise from the

user. These features would negate our objective of reducing labor and

user expertise. The approach here requires only declarations of data

structures and definitions of variables by equations. Checks re

progressively incorporated in the Configurator and MODEL Compiler, for

increasingly complex types of errors. They consist of checks of

cmpatibility of various attributes of data structures referred in

equations and checks of respective dependencies. The specification is

checked for consistency of use of data types, dimensionality of arrays

and ranges of dimensions. Dependency checks include the completeness

0 of definitions of variables and analysis of circularity of

definitions. Also checks are conducted of some rules for allowed

dependencies. The above checks have been incorporated in the two

translating systems and their effectiveness was evaluated

experimentally Cheng, 631. An i ortant consideration in reducing

the mber of errors is that the user eloys only the very-high-level

view and thus avoids making errors in the implementation level. Also

all corrections and modifications to specification are done in the

Configurator or ODEL languages. The automatic translators employ a

variety of scheduling and coamnication protocols embodied in

operating system and comunications technology, which have been

verified and of which the user need not even be aware.

For real time systems, another step is necessary. Typically,

real time systems have timing constraints. To satisfy the tme

constraints, a designer may have to partition a module into several

smaller ones based on the estimated execution time produced at

coilation time. A system for obtaining the needed timing

information, based on the module specifications, is being developed

(Tseng, 63].

* The dissertation describes a very-high level language for

concurrent progrim g which is devoid of implementation aspects and

"0 - " ,o. y . . - ' - ' :i . "? ."' - " " "-, .-i • .-.-. -- "°. . :
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it explores the effectiveness of programming with such a language

(assisted by the two translators). It also describes the operation of

the two translators - the Configurator and D6OEL compiler - with

emphasis on

i) semantic checking of the very-high-level language input and

assisting the user in its omposition,

ii) optimization of the overall computation by use of parallelism to

reduce overall execution time and by minimizing the use of main

memory storage and computation time in individual processors.

1.2 COW RIBUTICO

The objectives and contributions of the dissertation are as

follows.

i) devising a vezy-high level language for concurrent programing

which is devoid of implementation aspects.

ii) exploring the effectiveness of prograuming with such a language

(illustrated by two examples)

iii) devising, demonstrating and exploring the operation of

translators of the very-high level languages into an

implementation of the computation in the object computer

architecture, with emphasis on

a) semantic checking of the very-high-level language input and

assisting the user in its composition,

b) optimization of the overall computation by use of parallelism

to reduce overall execution time and by minimizing the use of

main msmory storage and computation time in individual

processors. '
The dissertation endeavors to make two points:

i) that very high level definitional, nonprocedural. dataflow
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languages can be used very effectively and naturally in

concurrent programming, and

ii) that automatic design and program generation methodology can

support program development and generate an efficient

implementation of the concurrent system.

1.3 PRINCIPAL - RA TSTIcS OF THE VERY-HIGH LEVEL LANXZ

The principal characteristics of the proposed programming style,

which distinguish it from conventional programming are summarized

below.

i) An overall specification is partitioned into modules. The. user

prepares a specification for each module. A specification of a.

module consists of declarations of .variable structures, equations

that define output variables in tezm of input variables, and

declarations of jmn m D of input variables on

output variables. An external dependency declared in one module

indicates that a function is specified in detail in other

modules. A user engaged in composing a specification has to

state whether an external dependency exists, but does not have to

know the detailed definitions involved in the dependency. Thus a

* specification of a module becomes independent of other modules.

ii) A variable in a specification may assusm only one value. This is

similar to the approach taken in mathematics. This mans that

all the values evaluated in the eventual computation procedural
program are represented in the high level view by distinct

variables. This allows the user to view all input, interim and

output variables statically, as if they assumed values a priori,

and helps to ompose equations that express the relationships

among the variables.

iii) Specification statements may be in an arbitrary order and there

are no control statments, such as for input-output, iterations,
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etc. The user visualizes the specification, not as a set of

cocnmands to be performed by a computer - as in conventional

programming languages - but as a set of equations that should be

made true, by finding the appropriate values for variables.

Thus, every equation is an "invariant" assertion.

iv) The synthesis of modules into a global system is specified in a

configuration language. Modules and files are assembled into a

configuration by defining a dataflow-like graph - with modules,

subsystems and files as the nodes and their input-output

relationships as the edges. A configuration may itself be a

subsystem represented by a node in a higher level configuration.

The evaluation of a configuration means making all the modules

true (meaning that all the equations in the respective module

specifications are true). Thus a configuration is viewed as a

static description of a computation, similar to individual

modules.

v) The user is not concerned with optimizing efficiency of

computations. The automatic translators incorporate optimization

for efficiency. They examine the efficiency of a much larger

number and variations of possible computation schedules than a
human prograzmier could possibly conceive and consider. Further,

the user would have to be highly expert in the object computer

architecture in order to offer guidance on efficiency. The one

exception to this approach is where the user determines the

partition of the overall specification into modules which the

translators may schedule concurrently.

Parallel execution of recursive functions have not been included

in the translators described here. Because of the recent interest in

parallel execution of recursive functions in artificial intelligence,

an extension to the system for dynamic initiation of recursive

definitions is considered for future research.
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1.4 PROGRAM DEOP TPROCEDURE

The overall procedure in using this mthodology is illustrated

scheatically in Figure 1. it star ts (at the top) with existence of a
concurrent programming poblm. In the case of a top-down approach,

the human users have to partition the problem into modules. In a

bottom-up approach, the modules may already exist. Ther nce two

." :...,: concurrent. .p.ogr.-..-g pr._blem. I the.ca_ e of a,' . to-dw ap.•proac.h, ..
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parallel paths in Figure 1 for module definition and for global system

synthesis. They merge at the bottom of the diagram to produce the

concurrent computation. The order of employing these two paths

depends on whether a top-down or a bottom-up approach is undertaken.

The path on the left is followed for each module in a

configuration. In case of system modification, only the

specifications of affected modules need to be added, deleted or

changed. This path consists of composing a specification of a module

in the MODEL language, and submitting it to the MDEL Compiler. The

MDEL Compiler constructs a dataflow graph for the module

specification. This graph is used for analysis of consistency and

completeness of definitions, to discover errors, and for optimization

of the generated program. The user mus. then make corrections to

respond to error and warning messages issued by the MODEL Compiler.

Finally, a program is generated, in our case in PL/I. The program can

then be executed as a process, by itself for testing, and in

concurrent operation with other modules as described in a

configuration specification.

The path on the right of Figure 1 is used to integrate programs

into a concurrent computation. A specification of a network of

modules and files is submitted to the Configurator. The Cnficurator

constructs a dataflow graph of the configuration and analyzes the

graph for compatability of the interconnections and completeness. The

messages. The Configurator produces then an overall customized design

to maximize the parallelism in execution of modules, and generates a

set of command language program for executing the network of modules

* in a chosen environment of computers, communications and their

operating systems. The Configurator also performs system wide

documentation, similar to previously developed systems (Teichreow,

771.
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1. 5 ASSUMPTIONS

A number of constraining assumptions ware made to permit the

implementation of the Configurator and MODEL compiler using the

existing hardware/software systems. They also define the application

domain of the developed system.

The assumptions of the developed systems are listed as follows:

i) Hardware/Software Environment

The physical environment assumed is a computer network,

where each node consists of one or more sequential computers that

operate under multi-programming operating systems. The operating

systems must have a file system for handling sequential, indexed

sequential and mailbox files.

ii) Each module or file is assigned to a specific location in the

computer network. Changes in location require re-specify the

configuration.

iii) It is up to the user to define backup modules and files. Namely,

the user must define backup files and recovery modules manually.

The systems does not automatically incorporate such operations.

iv) No recursive module definition is allowed. This is restricted by

the inability of dynamically creating modules. However, modules

can be activated dynamically by addressing messages to them.

Also, using the developed systems, i.e. the CONFIGURATOR and the

concurrent MODEL compiler, recursion can be simulated

iteratively.

The above assumptions implicitly restrict the scope of the

research area and the application domain of the developed systems.

Por instance, dynamic module re-allocation is not addressed in this

dissertation. Also, besides saving wrongly addressed messages, the

I=
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developed systems do not support failure recovery services

automatically.

1.6 USE OF EIWLES

The style of programming here differs greatly from that of

conventional procedural programing. The dissertation focuses on

presenting the new style through two examples. The first example is

of a resource allocator, such as found in operating systems or in real

time systems. This example uses a top-down approach, where the

overall system is partitioned first and then individual modules are

specified. The second example illustrates cooperative computation in
a distributd processing environment. It consists of econometric

models for a group of countries that are linked together to form a

regional econometric model. This example stresses a bottom-up

approach - developing or modifying first the individual modules

followed by their synthesis. The operation of the two translators is

described only generally in the interest of brevity. The further

detail of the examples are given in Appendix A.

1.6.1 RESOURCE ALLOXTION

Resource allocation captures the essence of many concurrent

systems used in real-time applications. It is used in operating

systm to allocate computing and input-output resources to jobs, and

in real-time systm to allocate available resources to participants -

such as routes and landing permissions in an air traffic control

system. To simplify the example, only reusable resources are

allocated. Allocation of consumable resources is illustrated in the

second example. There are many strategies for allocating resources.

* The more complex ones use resources more efficiently and fairly while

preventing a deadlock. Again for simplicity, the strategy selected

- . ~ i-:" " -
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here avoids deadlocks by requiring that a module submit a Maxjam

Claim =anet for all the resources that it will need, and release

them when not further needed. Also to satisfy the fairness

requirement, requests are satisfied in strict order of arrival.

To make the example more specific and easier to follow it is

stated in ters of the Dining Philosophers problem as related by

(Hoare, 78] due to E. W. Dijkstra. This however does not restrict

the generality of the example. Five philosophers share a circular

dining table where each has an assigned seat. There is one fork

between each two seats. A philosopher needs the forks to his right

and left in order to dine. A philosopher desiring to dine requests

the forks. When available, the resource allocator issues both forks

9 and the philosopher proceeds to dine. When finished, he. releases both

forks, which become available to his inmediate neighbors on a

first-come-first-allocated basis.

1.6.2 COOPERATIVE PROGRAMMING

Concurrent programming has been considered in the past mainly as

a top-down development process, outlining first the global aspects and

then proceeding to fill in the local details. With the advent of

compuer technology, the price of computers has drastically declined

and the computation power available in the past only in large scale

"main-frames" has become available in small personal computers. This

is bound to enhance connecting local computers to integrate many

complementary computations which were developed independently. This

mode of activity has been called Cg ratin goputai n. In this

mode, definitions of local modules occur naturally reflecting the

interest and expertise of local developers. The developers are

typically initially uncoordinated and dispersed organizationally and

0 geographically. The motivation for linking computers with modules and

data into an integrated system comes later, based on recognition of
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the interdependence of the respective problem areas. The advantage in

synthesizing a global system may be viewed an follows. In an isolated

module, the variables which are imposed by the external environment

are considered as 2azau.txa and their values are assumed by the user.

In contrast, in a global system these variables can be jointly

evaluated, which makes the results much more reliable. The main

difficulty in synthesizinq a nmber of modules is frequently due to

the difference in definitions given to essentially common variables in

independently developed interacting modules. An agreement must be

made between authors of such modules on needed transformations of

these variables to obtain a -o-n meaning and structure. Such an

aqreemnt is called a cont [Gana, 78] and is sometimes defined by

adding an interfacing module which perform the translation.

Project LINK [Klein, 77] is a classical example of cooperative

computation and is used here as an illustration. It consists of a

number of institutions who have been developing stand alone

econometric models, typically for their own country or region, and who

cooperate in synthesizing their models into an area or world wide

model. The databases and econometric equations in the local models

are in constant flux due to political and economic changes. Since the

respective economies are highly interdependent, it is very important

to synthesize the models to evaluate the effect of the very latest
developments. The synthesis of models is frequently performed on an
ad-hoc basis. Also results must be obtained quickly to alert the

decision makers to needed changes in economic policies and plans.

The second example has been proposed to us by Y. Yasuda of Kyoto

University and of the staff of the LINK Project at the University of

Pennsylvania. It consists of a study of economic interactions in the

Pacific Basin. The economies studied and their corresponding models

are those of the USA, Japan, Taiwan, Korea, Philippine and Thailand.
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1.7 RELATED WORK

In proposing a nonprocedural approach for specification and

implementation of a concurrent system, we are following in the

footsteps of a number of proposed languages for concurrent

prograeing .

The proposed language, however, is drastically different in its

semantics from previously developed programming languages. It

essentially requires composing data objects and their

inter-relationship mathematically and the compiler will make all the

definitions become true.

* 1.7.1 CONLCRRW PRO WG

PROLOG is a "tree" structured language. Each axiom is expressed

and evaluated in a tree fashion with the answer at the top of the

tree. In sequential PROLOG, the evaluation of the tree is depth-first
and from left-to-right. The main idea of designinq concurrent PROLOG

is to explore the use of concurrency implied in "AND" and "OR" nodes

in the tree. Each node in the tree can cmmunicate with each other

through passing messages. Since the message passing mechanism really

bears the concept of dataflow, the concurrent PROLOG has a quite

different programming style than sequential PROLOG, it has been called

"object oriented progranming" CE.Shapiro, 831.

MODEL is not a tree structure language. It uses the syntax

similar to the notions used in algebra. Modules are defined by the

user at a higher-level. The user of the MODEL language does not "see"

messages passing between modules. He sees only differently organized

entire files being produced and consumed by modules. The user also

does not see the concurrency explicitly. It is up to the Configurator

to decide the concurrency of the overall system. Of course, the more

the modules are being partitioned, there are more candidates to be

computed concurrently.

S

* * - . .' * - * .!
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1.7.2 MODULARITY IN UNIX

Kernighan (841 points out the added dimension of modularity

offered by connecting processes to for an integrated system (as an

alternative to procedure modularity). He discussed the effectiveness

of this mode of modularity when using UNIX. In UNIX, there is a

mechanim called -pipeline" which can be used to construct bigger and

czlex program by connecting mall and simpler processes. A

"pipeline" is a mssage channel between processes.

In MODEL, the devices similar to a "pipeline" are the MKIL and

POST files. The 3WIL and POST files offer much greater flexibility in

coamunications between modules, including 1 to many and many to 1

distribution of mesages. It therefore further enhances this mode of

attaining modularity.

1.7.3 DA WFLW MCINE

Using the currently developed Configurator and the MODEL

compiler, the concurrency of an application system is purely on the

module level. It is based on the partitioning of the overall j
specified application system. There is no concurrency below the

module level, because the MODL compiler generates a sequential

program for each module specification. This, however, is not a

limitation of the proposed approach, the MODEL compiler could equally

well produce parallelism within each module. Maya Gokhale

[Gokbale,931 demonstrated how to directly translate a MODEL

specification into MAD, a low-level dataflow language designed for the

Manchester dataflow machine. Thus an integrated dataflow system is

feasible by using the Configurator (at high-level) and Gokhale's NVDEL

compiler (at lower-level) to operate a cluster of dataflow machines

concurrently.

1.7.4 SURVEY OF OTHER CONCURRW PROGRAMING IANGPA(M



LL

- 16 - "161

Historically, concurrent programming languages used either

message passing or shared memory for inter-module communication. This

approach required analysis of the timing and waiting patterns of the

global computation events. This contrasts with the use of files for

inter-module comunication which eliminates lowr-level timing

considerations.

*Concurrent Pascal [ansen, 77]

A concurrent programming language based on the MONITOR

concept and emphasizing structured progranming for concurrent

program. More recently, a new version of concurrent Pascal

(EDISON) (Hensen, 81] was developed. In EDISON, a new mechanism

supporting abstract data type is implemented. Use of this

language can produce more structured and modularized proqram

than its ancestor.

The 1DNITOR concept requires shared memory hardware and is

not readily usable in distributed processing. However, the basic

concept of a MOITOPR for resource allocation can be expressed in

MODEL as illustrated in the resource allocation example (Chapter

4).

*Comunicating Sequential Processes (CSP) (Hoare, 78 and 61],

A concurrent programing language using message passing

which combines the guarded command suggested by Disjkstra and

parallel composition of processes. It uses only primitive

message send and receive constructs. The intention of creating

this language was to provide a formalim for concurrent

programming.

*Concurrent SP/k (CSP/k) (Bolt et al, 791

An extension to PL/I for structured concurrent programming

also based on the MONITOR concept.

"0.", . . ..
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bConcuzrent AND/OR Program@ (CAOP) [Harel and Nehab, 82].

A functional concurrent specification/prograxuig language

which utilizes recursive functions. CAOP can be considered as

nonral. However, comunication is still expressed in

tezms of individual messages. It resembles concurrent PROLOG in

many aspects. The computation model of this language adopts the

basic concepts suggested by Milner for CCS.

*ADA programing language [Ledgard, 80],(Taylor, 83]

A general purpose programing language for computer embedded

systems which typically require concurrency and real time

operation LeAdgard, 80]. The priary interprocess interaction is

termed "rendezvous". A "rendezvous" is a match of named entries

called by one task and declared in another task. A "rendezvous-

is completed when a process executes an ACCEPT statement in the

callee. The major concurrent co tation description in ADM is

through TSK description. According to [Hilfinger, 82], this is

an unnecessary complication to the language and may be well

defined by the existing TYPE mchanim in ADA. Structured

programming technique is encouraged by the language design. Also

efforts to verify the correctness of ADA program have been made

CTaylor, 83].

*Specifying Concurrent Proqram Modules CLamport, 83]

A specification method intended to specify the properties of

concurrent systemo( safety properties and liveness properties)

using intuitive temporal logic notions and power domain

construction. There is same similarity between this method and

the one proposed here since both approaches require making

assertions about the data rather than describing the behavior of

the processes.

'Calculus of Communicating Systems (CCS) (Milner, 0].

• . . . • . . . . . .
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A calculus of describing mathematical models for processes

and observable behavior of a concurrent system based on the

notion of "flow algebra" (Milmer, 79]. The objective was that

the proof techniques for reasoning concurrent sequential

processes could be fully developed in CCS. The concept "behavior

observation" in CCS has been adopted in PFL, CAOP, and other

systems.

*PAISLey, Executable requirements for embedded systems [Zave, 1902]

The result of the execution of a PAISLey specification is a

set logical consequences derived from the specification. It is a

language to record the requirements in a system (including

supporting system and application system) in a formal way. It is

not intended to be a "design specification" language, namely is

not intended to really implmnt any actual algorithms.

*VlL: A Functional Language for Parallel Programming [Bolmstrom, S.

83]

A parallel functional progrming language with the

intention of formal description of concurrent programs. It is

built on the top of an existing functional prograuing language

ML. It adopts some concepts from CCS, such as "channel" and

"behavior". The new extension of the concurrent part inherits

the rigour of ML system. It uses "typed channels" and models the

imperative part of the language very carefully (the I/O part) by

using continuation in denotational semantics. It is claimed by

the author that PL is more general than CCS but more difficult

to reason about formally and informally.

*ON TME RELATIONSHIP OF CCS AND CSP (Stephen D. Brookes, 1983]

This article addresses the relationship between the failure

model proposed for CSP and the synchronization tree model for

CCs. It finds a suitable set of axioms for the failure

6
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equivalence relation (similar to Kiner' s observation

equivalence). This work reveals the similarity in the underlying

semantic models of CCS and CSP.

*ARJUS: THE P..>. 4. LhNAGE AND SYSTDK (Liskov, 83,841

A programing language and compiler designed to solve

failure and recovery problems in distributed computing. The two

1:4hanisms, QJADAN and ACTION (two abstract datatypes) are used

for implementing surviving services for system failure. The

approach is based on ATOMICY of program units.

More thorough surveys of models and programming languages for

concurrent omputation can be found in [D.B. MacQueen, 19791 and

(G.R. Andrew, 19831.

1.8 OGMUTION OF THE DISSERTATION

The dissertation is organized in the following way.

HIGH-LEVEL COCURRET PGRM4I4NG

v

GENRAL DESCRIPTION ITION
AMD EXPLES II I

vI o o o
CONFIGURATOR MODEL RESULTS

V V v V

PART I PART II PART III A IXES

In Part I, the style of the high-level concurrent programming is

presented by giving two characteristic examples of concurrent

programing. Also overall description of the design of the two

developed systems and the major problem solved during the development

are all included.

The material in Parts II and III presents the methods, algorithms

S
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and techniques used in the implementation of the Configurator and

MODEL compiler, respectively. The algorithms used in implementation

are given with estimated complexity. Reading of Part II and III is

not necessary if only understAnding of the general ideas is desired.

In order to let the interested reader examine the working

environment of the two systems in even greater detail, actual

input/output of the two systems are provided in the appendixes. Also,

for the sake of completeness, the syntax descriptions of the two

languages (CSL and MODEL) are given in Part II and Appendix B

respectively.

-1
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CHaPTER 2

COMPOSING A CONFIGURATION OF MDULES AND FILES

2.1 MDDULES AND FILES

A user composes a concurrent system by specifying a configuration

of modules and file. The optimal partitioning of an overall

specification into concurrent modules, to obtain low computation time,

is still an open problem. Therefore typically, boundaries of modules

are defined along functional divisions. The user considers each

module independently in isolation. Therefore he regards the outside

environment purey as data files. Such files can connect modules in

the overall configuration. Subsystems are subconfiguration defined

separately. In our example of resource allocation, the five

philosophers and the resource allocator form respective modules

naturally. Modules are consumers or 2xgUcG of their source or

±arga files, respectively.

2.2 CONFIGURATION OF THE DINING PHILOSOPHER EXAMPLE
0

The configuration for the Dining Philosophers is shown in Figure

2. Each philosopher module (P1 to P5) produces a file of requests and

releases of resources (REZQ_R.EL) and consuams a file of allocations of

* resources (ALLOCl to ALLOC ). The resource allocator (R) has a target

file of allocations (ALL0C) and a source file of requests and releases

of resources (REQREL). A target/source or consumer/producer

relationship is represented by a directed edge in the network. When

* the same file is produced by one module and consumed by another module

- 21 -
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then the two modules become connected via the file.
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FICGflRE 2. Configuration Network rt Reusable Resources
Allocation Example

6The user must select the attributes of connecting files and in

this way provide information for guiding the Confiqurator in attaining

high degree of concurrency in the computation. The descriptions of

the organization of a file, given in the specifications of it'*s

Uproducer and consuner modules, must be compatible. For example, as

will be shown later, the targe file of the resource allocator (ALLOC)

and the source files of the philosophers (ALWECl... ) contain the sau

data but are viewed by their producer and consher mdules as having
different organizations. The file comatibility rules are are stated

later as some knowledge of the IVDEL language (described in Chapter 5 )

*
" " "1
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is necessary.

Thus the user must instruct the system about the nature of module

and file nodes. A module may be

i) an individually specified module (N)L-default),

ii) a group of modules and files that form a subsystem which is

defined in a separate configuration (GRP), or

iii) a human with an interactive terminal communicating with the

system (MAN). This type of "module" naturally is not initiated

automatically.

As noted, the user regards files as aggregates of static data and must
therefore specify the organization of the data as follows.

i) Sequential (SA-default): The sequential file is being

communicated as one entity. It implies that the file can be

consumed only after it has been entirely produced. Such a file

may have only one producer module, but any number of consumers.

It is typically associated with a device, such as tape, printer,

etc.

ii) Index-sequential (ISAM): Each record in an index-sequential file

has a variable defined as a key which defines (accesses) a record

in the file. There are no restrictions on the order of

references to such a file by producer or consumer modules. If
only a single record can be updated at a time, then the MODEL

Compiler incorporates code in the generated programs to lock each

other when updating the critical data. Otherwise, the user is

notified and control of access must be part of the system

specification (similar to the resource allocator example). The

user can also indicate that an ISAN file is first produced and

later consumed. In such a case the user has to define separate

o1d and new versions of the file and denote an edge between the
two versions in the configuration. An ISAM oqanization file is

typically associated with a disk device.

4w
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iii) A mailbox (MAIL): A mailbox file can have a number of producer

and consumer modules. Records from different producers are

queued in a mail file until consumed in order of their arrival.

If there are more than one consumer, they consume the queued

records in an arbitrary order. Thus it is not necessary to have

a physical device for storing a mail organized file.

iv) Post office like facility (POST): A post file is a distributor

of records to other (source) mailbox files. It has one producer

module, and its records include a variable defined as an address

of a destination MAIL file. Therefore, it can have any number of

edges connecting it to mail files.

MAIL and/or POST file organizations are used for direct

connection of files between modules without the use of intermediate

storage device. The producing and consuming may then be concurrent.

The POST and MAIL files use limited space in main memory. The

MDOEL Compiler, when generating a program for a module, optimizes the

use of main memory space used for data in these files. Program

optimization causes a producer module to store and produce one or a

few records at a time and the consumer module to consume and store one

or a few records at a time (if possible). If producer and consumer

processes are concurrent, the POST or MAIL facilities need to buffer

only a limited number of records. This is similar to the concept of a

pipeline or a stream. Such a file is referred to in the following as

having a virtual djanh a along which only a window of records needs

to be buffered. The user is not involved in program design, but is

told that to attain better efficiency only certain forms of subscript

expressions may be used in referencing variables in such files. A

0 specifier of a module is advised by warning messages if other

subscript expression forms were used and whether a file dimension can

or can not be virtual. This is further discussed later.

The above rules must be followed in connecting modules and files

0 into a configuration. A configuration network is shown in Figure 2

for the resource allocation example. The language used to specify a

0-
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configuration consists of statements that define paths in the network.

Figure 3 shows the specification for the configuration of Figure 2. A

statement of the language consists of node names - prefixed by 'M:

and IF-' to indicate whether the node is a module or a file,

respectively, and suffixed by desired attributes - connected by edges

-,'. The statement terminates with a ';.

1 CONFIGURATION: REUSABLE;

2 M:+Pl,+P2,+P3,+P4,+P5
P: REQREL( ORG: MAIL)

-M: R-), P: ALLOC(ORG: POST)
-F :ALLOCl( ORG: MAIL ), ALLOC2( ORG :MAIL), ALLOC3( ORG :MAIL),

ALLOC4( ORG: MAIL), ALLOC5( ORG: MAIL);

3 F :ALLOCl-1M:Pl;

4 F:ALLOC2-iM: P2;

5 F:ALLOC3-14M:P3;

6 P:ALLrC4-)M:P4;

7 F:ALLOCS-,K:P5;

FIGJRE 3. Specification of Configuration of Figure 2

A node in the configuration graph may have a number of optional

attributes, especially a physical name providing location, device,

directory. version and record size (described in Part II). Default

values are assumed if these attributes are not provided (which is the

case in Figure 3). Also synonymous names may be declared. Module

node names may be preceded by the + sign to indicate that the module

is not to be initiated automatically by the command language programs

produced by the Configurator, but instead will be initiated manually.

In such a case the manually initiated module must give its identity in

the connecting file( s). Thus the absence of such a module would not

effect other modules.

For example, a philosopher (P1 to PS) module need not be

initiated automatically with the resource allocator module (R). It

may be initiated when the Philosopher joins the dining arrangement,
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and terminated when he decides not to eat there again.

I
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C39PTER 3

OPERATION OF THE CONFI C RTOR

3.1 FUNCTIONS AND PHASES OF THE CONFIGUITOR

This chapter provides an overview of the Configurator. Part II

gives more detail and systematic description.

The Configurator has five functions: checking the input

configuration, scheduling execution of modules, evaluating diameters

of strongly connected components (to be used in the iterative solution

to the distributed simultaneous equations) , generating JCL and PIVI

prograu and generating user system documentation.

The first phase of the Configurator performs syntactic checking

of individual statements and constructs a configMXAt.gn graph where

the nodes are assigned all the necessary attributes, supplied in the

specification or determined by default (Section 11.4).

The second phase analyses the graph and verifies that the rules

for composing a complete and consistent specification of a

configuration (Section 10.6).

Deeper global checking is' conducted as follows. maximally

strongly connected components (MSCC) in the configuration graph are

identified and the user is warned that they constitute a necessary but

not sufficient condition for a deadlock (a deeper check is conducted

by the NODEL Compiler for each of the modules in the NSCC, described

later). Warning and error messages are couched in the configuration

language and do not refer to implementation level concepts (Section

-27-
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In the third phase, the Configurator schedules the entire system.

It attempts to minimize the usage of mailbox space. This is based on

the limited information available in the configuration, although

better efficiency could be obtained if their intercommunication

pattern was known in detail. Processes of modules connected by post

or mail files are initiated together and operate in parallel if

possible. Such module nodes form a Raz a cm nent and are

represented by a single node in a = araph. Modules prefixed

by + sign are initiated manually. If an edge exists between the two

ISAM (standing for Indexed Sequential Access Mechanim) files, it

implies that completion of the producer modules must precede

initiation of the consumer modules. This graph consists of nodes,

each representing a module or a group of modules in a parallel

component, and edges indicating sequential order between nodes. This

comoornent gKU& is checked for cycles, and error messages are issued

if any cycles are found (Section 11.7).

The Configurator then calculates diameter for each strongly

connected components in a configuration. The diameters are needed in

the distributed termination algorithm (Section 11. 8).

In the next phase, command language statements are generated to

run the entire configuration of programs and files in a chosen

environment. The program generation phase uses the available

facilities offered by the operating systems and communications

software as well as the available processors and communication links.

In the case of the implementation using VRX/VNS, both, sharing memory

or sending and receiving messages, are available for communications

between modules. The technique of code generation can conveniently

express either implementation strategy. The message communication

method was selected as it is more suitable for a geographically

distributed network and it retains better independence of a program

from the types of devices used; for instance, a MKIL file may serve

as a sequential file (without user intervention), depending upon

-S , " --.. ." " -" . . . -.-. .. - , . ", " " - .- ' " " .. - " I "L " -, ., .
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whether it is used to connect modules in a configuration or not

(Section 11.9).

Due to the particular facilities in VRX/VMS, the programs

generated by the Confiqurator consist of:

i) PW1 program to establish the necessary mailboxes.

ii) command language proqrams which initiate and synchronize

sequential module or subsystem execution.

The conmand language programs are placed in respective files. These

files form a tree structure, where each file at a non-terminal node

executes the files in the nodes below it. Thus the root file of the

tree is the "main" command program which contains commands for

executing the files which initiate subsystems or modules, and so on.

owever, the command program files for modules to be initiated

manually are not present in the tree. They are referred by the user

for eneeftion. In addition to the command language programs generated

by the Configurator, there are PVI program files for each module

generated by the MODEL Compiler.

A module reading a record from a mailbox is suspended if the

mailbox is empty, until a record has been written by another process

to the respective ma.1 .ox. A module is suspended when writing a

record to a full mailbox, until a record in the mailbox has been read

by another process and space has becom available. The latter

suspension is not necessary if the space in the mailbox is unlimited.

The above communication protocols synchronize the concurrent

processes. Sequential order of execution is obtained by using the

* synchronization facility in VAX/V3 command language (VRX/VMU, 80].

It assures that a predecessor process is completed before a successor

process is initiated.

Finally a number of reports document the confiquration

specification, its network, the modules, the files and their

0
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attributes, the schedule and the compatibility requirements imposed on

files that connect modules.

The remainder of this chapter describes the main problems

encountered in the design and implementation of the Confiqurator and

the methods used to resolve these problem.

3.2 CHECKING

The checks performed by the Configurator are divided into the

following classes:

i) Completeness and inter-module connections

ii) Consistency of (derived) temporal relations

iii) Compatibility of interfacing file descriptions

3.2.1 CONPLETEESS AND INTER-DOLE CONNECTIONS

The completeness check detects the existence of isolated nodes in

a configuration (Section 11.5). The Confiurator also checks

connection patterns among modules and connection restrictions for each

node. Basically, the following consume/produce patterns are allowed

for the different file types:

MIL n:l

POST l:n

SAN l:n

ISAX n:m

Similar restrictions have been made for MODULE nodes and the

smmary of the restrictions can be found in Section 10.5.

3.2.2 CONSISTENCY OF TEMPORAL RELATIONS

The underlying assumption used in the consistency checking is

that all the modules in a configuration are ATOMIC (section 11.6.1),

o0
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namely they acquire all their input files on initiation and release

them on termination. There are also three temporal relations defined

on five basic module-file connections patterns (section 11.6.1). Let

a pair of real numbers (Mis,Kie be the starting and ending times of

module Mi, the three temporal relations and implied execution time

constraints are:

i) sequential relation, denoted as Mi -i Mj,

implies Mie < Mjs.

ii) mail relation, denoted as Mi -) NJ,

implies Mjs 4- Mis & Mje 3- Mie.

iii) parallel relation, denoted as Mi 1 l Kj,

implies Mis-4js and Mie-je,

The transitivity of these temporal relations are defined (section

11.6.1.2). The temporal relations are propagated in a configuration

graph according to those transitivity rules.

An inconsistency in a configuration graph is obtained by deriving

either Mi- Mi or Mi- Mj and Mi-N1j based on the transitivity rules

(Section 11.6).

3.2.3 comPATIBILITY Op INTERFACING PILE DESCRIPTIONS

Because of the independent development of individual modules, the

checking of the compatibility of interfacing file descriptions is

rather difficult. Hver, messages are issued to warn the user of
this requirement. Documentation is produced to show for each file,

it's consumer and producer where compatibility of file structure is

required (Section 10.6).

3.3 OPTIMIZAION

The Confiurator uses the component graph to schedule module.

Processor and memory usage is optimized by calling a module as late as

possible when its output is needed. The concurrency of the overall

system is also optimized by the use of the component graph (Section

!'C :, -" -"- ' -° - -" -"-" .." . ,"............................................................-...1r''.' . . -. ' i
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11.6.7).

3.4 DIMETE EVALUATiOn

The diameter of each strongly connected component in the

configuration graph is needed for the distributed termination of the

iterative multi-node solutions (Section 16.2). The Configurator

calculates the diameters of the strongly connected components in a

configuration and passes the diameters to the generated JCL programs,

to be used by individual modules at runtime (section 11.8).

3.5 CODE GEERATION

In this phase, the Confiurator generates JCL and PVI programs

for the execution of a user system. The "tree" structured execution

pattern is accomplished by use of the commnd& in VRX/VMS. Detail

description of the code generation part of the Confiurator is given

in section 11.9 (Part II). Example JCL and PL/I programs generated

fzom a CSL specification are given in Appendix A.

0



CHAPTER 4

SPECIFYING INDIVIDUAL MODULES - RESOURCE ALWCATOR

To complete implementation of the configuration of Figure 2. it

is necessary to specify each module independently. In this

configuration there is a philosopher module, which repeats five times,

one for each of the five philosophers, and a resource allocator

module. The specifications of these modules are discussed below.

This chapter provides an introduction to the use of the MODEL

language.

4.1 THE PHILOSOPHER MOMDU.

Figure 4 shows the specification of the philosopher module stated

in the MODEL language. The specification is divided for convenience

into five parts: header, data description, data parameters and

internal and external equations. There are also/explanatory couments

and statement numbers in Figure 4. The rational behind composing the

statements is discussed in the following.

The header consists of the name of the module (Pk), the source

file of allocations (AL Ck) and target file of requests and releases

(REQREL). The lowr case k denotes the unique number of each

philosopher.

- 33 -
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/*HEADER*/

I MODULE: Pk(k-1 to 5); /* module name (repeats 5 times) */
2 SOURCE FILE: ALOCk; /* allocation files */
3 TARGET FILE: REQ-REL; /* file of requests and releases */

!/DATA DESCRIPTION*/

4 1 ALLOCk IS FILE(ORGANIZATION IS MAIL)
2 SGA( *) IS RECORD, /* individual allocation message */
3 PROC_ID IS FIELDPIC'9'), /* process identifier *1
3 CLOA IS FIELD(BIN FIXD); /* time of allocation '/

5 1 REQREL IS FILE(ORGmIZATIo IS MAIL)
2 MSGR(*) IS RECORD, /* request/release message
3 PROC_ID IS FIELD(PIC'9'), /* req/rel process id */
3 RQ__ORRL IS FIET(BIT(1)), /* request-O,release-l */
3 RES(S) IS FIELD(PIC'9'), /* quantities of resources*/
3 CLOCKR IS FIELD(BIN FIXED); /* req/rel time

/*DATA PARAMETERS*/

6 (I,J) ARE SUBSCRIPTS; /* I for MSGR, J for RES *
7 IX IS FIELD( FIXED BINARY) /- indirect( sublinear )subscript*/
8 IX(I )-IF 1-1 THEN 1

ELSE IF RQOR_ 1-1) THEN rX(I-1)+l
ELSE IX(I-1) ; index of SGA

9 END.NSGR( I )R.._.RL I ) a RAOMDO .99;
/* definition of the range of MSGR */

/*EQUATIOIS FOR VARIAdBLES IN FILE REQ....ELWt

10 PR0C_ID(I)-<k, ;
11 ORR_ I )-IF 1-1 THE 'O'S ELSE ^RQOR_R 1-1);
12 RES(I,J)-(J-OD(k,5))(J-IMD(k+I,5));

/* right and left fork request */
13 CLOCKR(I)-IF 1-1 THE TIME

ELSE IF R._oRW(I) TH CLWCAI(I-1))-OOOOWG(RANDOM)
ELSE CL=( I-1 )-lOOOOLOG( RANDOM)

/*EQUATION DEFINED EXTEIALLY (IN OTHER MODULESW)*/

14 NSGA( I I) )-DEPDIDS_..N( MSGR( I))

FIGURE 4. Specification of Philosopher Module

The data description part in Figure 4 declares the structure of

the two files. A data structure is described hierarchically as a

tree. The apex node is called PILE, an intermediate node is either a
GROUP or a RECORD. A RECORD is the smallest structure exchanged

between an external environment or device and the module. A terminal

node is denoted as a FIELD. Each of the nodes is named, and may
repeat and form a vector. The number of repetitions, or size of the

vector is in parenthesis following the name. *" indicates an unknown

(variable) number of repetitions. The primitive data types are

.1
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similar to PL/I- picture, decimal (fi loat), binary, bit and

character. Thus the ALLOCk file (stateme" -ontains a vector of

allocation messages (records) MSM. Tht- .Q_REL file (statement 51

contains a vector of requests/releases messages (records) MSGR. These

two entire vectors are viewed by the user as they were available a S
priori and his main task is to compose equations which relate them.

A philosopher requesting/releasing resources/forks identifies

himself in the PROC_ID field of ISGR. The philosopher to whom

resources are allocated (i.e. by the resource allocator module) is

identified in the PROC-ID field of MSGA. The records in the ALLCc

file come from a post organized file. NSGR may be for a request or a

release of resotuces, and RQ.ORRL denotes which case it is. Each

MSGR includes a vector of resources RES, which contains the quantity

of each resource that is requested or released. There are 5 resources

in the problem of the 5 dining philosophers - each consisting of a

single fork in a respective position. Finally, CID= and CWCKR are

used to simulate the clock (in seconds) of an allocati.on and

request/release, respectively.

Repeating data structures form arrays. The individual elements

of these arrays are referred to by use of subscripts. The sizes of

dimensions of arrays may be variable and need to be defined. They

constitute the data parameters of the specification in Figure 4.

Statement 6 declares two f= variable I and J that are used as

subscripts. They assume all the integer values from 1 to the size of

the dimension of the variable which they index. Note that they differ

from ordinary variables which can assume only a single value. I is

used to subscript the request/release messages, (MSGR and its

constituents), and J to subscript the resources, RES. Note that RES,

the requested or released resources, changes for each message and

therefore is two-dimensional, with subscripts I, J. I indexes the

"historical" values of RES. There is a correspondence between

individual allocations and requests/releases. For each requesting

MGR, (where RQ_OR_RL-O), there is a corresponding allocation SGA.
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No NSGA is necessary for a release MSGR, (with RQ_OR_RL-l).

A widely used method in MDEL for relating elements in two arrays

is to define separately the indices of the related elements. This is

the case in defining an indrec index vector IX (an internal

variable) which gives the indices of MSGA for each index I of MSGR.

IX is declared in statement 7 and defined in statement 8. IX is a

vector of the same shape as MSGR. Thus it has a value for each value

of I. For 1-1 it has a value 1. Then, IX is increased by one if the

preceeding MSGR is a release. We call IX s1j.~nea to I. The

sublinear relation between IX and I satisfies two conditions:

X( 1)-Ol1 and IX( I )-IX I-i )-011. The program generator recognizes

sublinearity and uses it to generate a more efficient object program.

IX is referred later in statement 13.

4KIL
, , IMSGRI

, I (I) I
.Philosopher D

' I

__III IWJL

a) Illustration of External Dependency Edge

Subscripts Record Record

I IX( I) MSGR Dependency MSGA

1 1 request 1 erternal( N allocation 1

2 1 release 1 - internal(P )

3 2 request 2 *2X Ann 1{ ( \ - allocation 2

4 2 release 2 -m- internal( P)

b) Indices of Records in the External Dependency Statements

FIGURE 5. External Dependency As Viewed From The Philosopher Module
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Figure 6(b) illustrates the relations of these subscripts and

records. (The Dependency column is described later).

A condition of the last element in a dimension is denoted in

MDEL by a variable named by prefixing END to the name of a variable

with the rightmost (lowest order) dimension. This variable has the

same shape as the one named in it's suffix. All it's elements have a

value 0, except for the last element in the rightmost dimension which

has value 1. Statement 9 defines END.MSGR, which has the same shape

as MSGR and effectively gives the size of MSGR. It expresses an

assumption that a philosopher, after having dined repeatedly, on the

average 100 times, exponentially distributed, has had enough and

decides to quit and dine elsewhere. Thus every element in END.MSM(I)

has a value of 0, except the last element which has a value of 1.

Statements 10 through 13 define the four FIELD variables in the

REQREL file. PROCID is the philosopher identification. The value

of R._OR_RL is 0 for a request and 1 for a release. The request.

forks in RES are always to the left and right of the philosopher, as

expressed in statement 12. CIWCKR simulates the tim stamp of a
request or of a release of resources. Statement 13 shows that for

I-1, COCKR is the time of the first dining request (defined by the

function TIME , otherwise it depends on the time of the previous

allocation (COCKA( IX( I-1))) and the dining and thinking times which

are assumed to be exponentially distributed with 1000 and 10000

seconds means respectively. Note that this assumes that a philosopher

may join and quit the diners at any time of his choice and the number

of philosophers may be variable. However, each philosopher must have

a seat assigned at the table in advance of the first eating.

To specify the philosopher module completely it is further

necessary to specify external dependencies due to functions provided

by other modules. The functions provided by the outside environment,

however complex they may be, interest the module specification only to

the extent of knowing that they exist. While the outside relation may

change, as long as the dependency continues to hold it is not
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necessary to respecify the module. In our example it is necessary to

specify in a philosopher module the external function of an allocation

in response to a respective request (this dependency is imposed by the

resource allocator module). It is not necessary to show this

relationship in detail as expressed in the R module. A user can

express it in a reduced form as shown in statement 14 of Figure 4.

The pseudo function DEPENDS_ON is used to express the fact that the

source record variable(s) on the left hand side depend externally on

the target record parameters of the function. Note that the internal

dependency of a release on an allocation is expressed implicitly in

equation 13. These two dependencies are illustrated by the labeled

arrows in the table at the bottom of Figure 5.

4.2 THE RESOURCE ALLCATOR MODULE R.

Figure 6 shows the specification of the resource allocator module

R. The R module is larger and more complex than the ph losopher

module. It further illustrates the equational style.

Statements 1-3 in Figure 6(a) give the name of the module, R, the

_* source file REQREL, and target file ALLOC. Another target file

SIMULATION is a report of the results of the simulation of the Dining

Philosophers problem. The specification of SIMULATION is given in

statements in Figure 6(c). REQREL and ALLOC are declared in

statements 4 and 5 of Figure 6(a). RELREQ consists of the combined

requests/releases received in the mail from all other modules in the

sequence of their arrival. ALLOC consists of all the allocations of

resources distributed through the post office like facility to all the

modules in the order that they are issued. Note that the records in

ALLOC form a two dimensional ragged edge matrix, with each row

corresponding to all the allocations that can be made in response to a

respective request or release message. This differs from the vector

* organization of ALLOCk. However this does not violate the rules of

compatibility of communicating files.

- S
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I *I1ADER*"/

1 MODULE: R;
2 SOURCE:REQREL; 1* merged requests/releases from all processes */
3 TARGET:ALLOC, / merged allocations to all processes

SIMUIATION;/* report of results of simulation '/
/*DATA DESCRIPTION-/

4 1 REQREL IS FILE, (ORG IS MAIL),
2 MSGR(*) IS RECORD, /* messages for req/rel of resources /
3 PROC_ID IS FIELD (PIC'9'), /* id of process *1
3 RQOR.RL IS FIELD (BIT( 1)), /* request=O, release=1 - /
3 RES(5) IS FIELD (PIC'9), /* vector of resources /
3 CLOOK IS FIELD (PIC'(9)9'); /* time of message *1

5 1 ALLOC IS FILE, (ORG IS POST, KEY IS PROCID),
2 MSGAS(*) IS GROUP, /* group of alloc messages */
3 MSGA( -) IS RECORD, /* individual message */
4 PROCID IS FIELD (PIC'9' ), /* allocated process */
4 CLOCKA IS FIELD (PIC-(9)9');/* time of allocation */

6 1 QUEUE IS FILE, /* process queues *1
2 STATQ(*) IS GROUP, /* queue for each req/rel */

3 PROC(*) IS GROUP, /* process in queue
4 PROC ID IS FIELD (PIC'9'), /* id of process */
4 IN_IX IS FIELD (PIC-91),/*index of process in queue t/
4 OUT_rIX IS FIELD (PIC'9'), /* index of process in alloc */
4 RES( 5) IS GROUP, 1* resource vector
5 CLAIM IS FIELD (PIC9' ), / maximum resources claimed */
5 StUCLAIM IS FIELD (PIC'9'),

/* sums of claims for resources in q */
5 SAT IS FIELD (BIT( 1)); /* availability of resources -/

7 1 RESLIMIT IS GROUP,
2 NUMRES(5) IS FIELD (PIC'9'); /* # of resources available */

/-ATA PARAJETERS-/

8 (I,J,K,L) ARE SUBSCRIPTS;
/* I subscript of request/release messages /
/* J subscript of resources */
/* K subscript of processes in queue */
/* L subscript of group of allocations */

9 SIZE.PROC(I)-IF I-1 THEN 1
ELSE IF RQORRL( I) THEN SIZE. PROC( I-1 )-1

ELSE SIZE.PROC( I-1 )+l;
size of process queue

10 SIZE.MSGA(I)= IF SIZE.PROC(I).O THEN OUT_IX(I,SIZE.PROC(I))
ELSE 0;

4 / size of group of allocations */
11 UM._RES(J)1; /* one fork in each position */

FIGURE 6(a) Resource Allocator Module Specification: Header,
Data Description and Definition of Data Parameters

The file compatibility rules are briefly sumarized below.

i) The data structures that constitute the unit of transfer of

information between different media in a computer system are

denoted as records. A match must be possible between the

variables in the corresponding records in producing and consuming

4
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module specifications. The lengths (in bytes) of matching

records, specified separately in the consumer and producer

modules, must be the same.

ii) Matched variables in the respective records may be named

differently in the producer and consumer module specifications,

but they must have the same attributes, i.e. data type, scale

and length.

iii) Matched records may form arrays in respective specifications. it

is not necessary that the number of dimensions of the arrays in

the specifications of the file in consumer and producer modules

be the same, but the total number of records must be the same.

There is also an internal QUEUE file consisting of the history of

the status of the queue of processes. It repeats for each

request/release. Processes are added and retained in the queue in the

order of the respective requests, and omitted as a result of

respective releases. The QUEUE file is described in statement 6.

STATQ is the status of the queue for each request/release message.

The individual entry in the queue is PROC. It contains the

identification of the process PRoC.ID. Two indirect index variables,

IN_IX and OUTIX are described further below. A vector BIES contains

information on requested resources. RES is a matrix with rows

corresponding to processes and columns corresponding to resources.

The components of RES, i.e. CLAIM, SUN-CLAM and SAT, are therefore

also matrices. (Actually 3 dimensional, repeated for each

request/release). CLAIM is the number of resources claimed by the

process. SUMSLAM is the cumulative number of resources needed to

satisfy all the clai by this process and it's predecessors in the
queue. SAT is a binary variable indicating for each process whether

the claims for a resource and it' s predecessors resources, in the

order of resources in RES, can be satisfied from available resources.

It is typical in MDDEL to specify permutation or selection of

elements of a vector by defining the indices of the respective

IJ
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elements. INIX is the index of a process in the preceding queue,

i.e. in STATQ(I-I). A number of processes may be allocated

resources as a result of a release message. OUTIX is the index of

the process in the respective group of allocation messages. Both,

IN_IX and OUT_IX increase monotonically with the order of the

processes in the queue. These variables are discussed further.

A number of parameters are used with, or are attributes of, the

data. The subscripts IJ,K and L are declared in statement 8. The

subscript I indexes request/release messages. J indexes resources

(forks). K indexes positions of processes in the queue and L indexes

allocation messages. There are three dimensions that require

definition of their sizes. The range of I is assumed as infinity

reflecting the notion that R will operate forever. There are a number

of ways to define a size of a dimension in MODEL. The use of the END

prefixed variable was already presented in Figure 4. Another way to
define a size is through prefixing the keyword SIZE to the name of a

respective data structure. SIZE prefixed variables define the number

of elements in the respective dimension. The size of the vector PROC,

i.e. the number of processes in a queue, is defined in statement 9.

As shown in statement 9, the size of the queue increases by one for

each request and decreases by one for each release. The size of the

vector MSGA, i.e. the number of allocations in a group is defined in

statement 10. The size of the group of allocation messages, NGA, is

the same as the value of OUT_IX for the last process in the queue.

This is discussed further below. Figure 6(a) ends with definition of

RES the number of resources of each type - namely there is 1 fork for

each of the five fork positions.

Figure 6(b) shows the equations for variables in the two files

QUEUE and ALLO and the external dependencies. There are several same

named variables in different files and the name of the respective file

is used as a prefix to remove the ambiguity. QUEUE.PROCID, the

identity of a process in the queue, is defined in statement 12 for two

cases - for adding a process corresponding to a request, or for

• -..•
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retaining a process in the queue. INIX gives the index of the

process in the preceeding (I-i)th status of the queue.

/* EQUATIONS FOR VARIABLES IN FILE QUEUE */

12 QUEUE.PROCID(I,K)- IF -R Q_OR_RLI) & (K-SIZE.PROC(I))
THEN REQ...RE.PROC-D( I)
ELSE QUEE.PROC_ID(I-l,INIX( I,K));

13 INIX( I, K)- IF -RQOR..L( I) THEN K
ELSE IF REQREL.PROCID( I )-QUEUE.PROCID( I-1,K)

THEN IF K-i THEN 1 ELSE INIX(I,K-I)+I
ELSE IF K-1 THEN 2 ELSE INIX(I,K-I)+2;

14 OUTIX(I,K)-IF RQ_OR.RL(I) THENIF SAT(I,X,5)6 '-SAT(I-1,IN_IX(I,K),5)
THEN IF K-i THEN 1 ELSE OUTIX( I,K-1)+1
ELSE IF K-i TM29 0 ELSE OUTX(I,K-1)

ELSE IF K-SIZE.PROC(I)&SAT(I,K,5) THEN 1 ELSE 0;
15 CLAIM(I,K,J)- IF -RQORR(IU 1) & (K-SIZE.PROC(I))

T H EQREL.RES(I,J)
ELSE CLAIM( I-1, INIX( I,K),J);

16 SIMLCLAIM(I,K,J)- IF K-i THEN QUEUE.CLAIM I,K,J)
ELSE QUEUE. CLAIM4 I, K, J)+SILCLAI( I, K-1, J);*17 SAT(I,K,J)-IF J-I

THEN( SUMCLAIM( I, K, J)<-NUI1RES(J) I QUEUE-.CLAIM( I, K, J)-O)
ELSE SAT(I,K,J-l) &

(SUINCLAIM( I, K, J) <HHRES(J) I QUEUE. CLAIM( I, K, J)-O);

/* EQUATIONS FOR VARIABLES IN FILE ALLOC /

18 ALLOC.PROCID( I,OUTIX(I,K))-
IF (K-i & OUT_(I,K)-I)(KSI&OT_. I,K)iOUTIX(I,K-1))THNQUEUE. PROCID( I, K);

19 CLOCAI,L)-CLOK(I);

/ EQUATIONS FOR E)TRNAL DEPEDENCIES -

20 NSGR( I )-DEP.ON(MSGk I-l,L) )i

FIGURE 6(b) Resource Allocator Module Specification:
Equations For Variables in Files QUEUE and ALLOC
and the external dependencies

When the Ith NSGR corresponds to a request then the requesting process

is added in the last position. In the case of a release, the resource

releasing process is deleted from the queue. OUTIX, defined in line

14, is monotonically increasing along the queue. Processes in the

queue that are not being allocated resources have an OUTIX & value

equal to the preceding process, while OUT_IX is increased for

processes which are allocated resources. As it is easy to verify, in

the case of the dining philosophers, there may be 0, 1 or 2

allocations for each I.
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As defined in statement 15, CLAIM, the maximum number of

resources of each type requested by a process, is contained in the

respective request and also retained in the queue. SUK_CLAIM, defined

in statement 16, is the cumulative number of resources of each type

needed to satisfy the claims of a process and all its predecessors in

the queue. If SUMCLAIM I,K,J) exceeds NUMRES(J), the total number

of copies of a resource, then the respective CLAIM(IK,J) can not be

satisfied. This condition is used to define SAT in statement 17.

Statements 18 and 19 define the identity of the process that is

allocated resources (ALLOC.PROCID), and the simulated time of the

allocation (CLOC). Statement 19 neglects the computation time for

computing the allocation. As noted, the latter is useful in a

simulation report of the Dining Philosophers problem.

Finally the equation for the external dependency, as seen by the

R module is shown in statement 20. This equation expresses the

outside dependency of a release on a previous allocation. It is

illustrated in Figure 7.

One of the advantages of this style of programming is the ease of

making complex changes. For instance, if we wanted to give priority

in allocations to some modules, we would have to add priority

variables to the declaration of requests (statement 4) and only modify

the equation for SAT (statement 17) to include the dependence on the

priority variables.

As noted, the dependency need not express fully the

allocation-release relations. In the R module, the dependency is

visualized in terms of the combined request/releases file, received

4 from all the philosopher's modules. Namely, the index of allocation

to a Philosopher must be less, at least by 1 (i.e.,I-1) than the index

of a release.

To obtain a printed output file of the simulation results of the

Dining Philosophers problem, it is necessary to define a report,

called SIME]LATION. As shown in Figure 6(c) statement 21, this file

0 I . . - -. . .- ' . .. ,. ..
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contains the identification of the philosophers and the respective

times of requests and allocations of forks. Statements 22-26 define

the values in this file as equal to respective PROCID, CLOCKR and

CLOCKA variables. For each request there may be 0,1 or 2 allocations.

21 1 SIMULATION IS FILE,
2 HDI IS RECORD,
3 HDF3 IS FIELD(CAR 125),

2 HD2 IS RECORD,3 IMP2 IS FIEL( CHR 125 ),2 HD3 IS RECORD,3 HDF3 IS FIELD(CHAR 125 ),2 EVENT(-) IS RECORD,
3 REQUEST IS GRP,

4 PROCIDM IS FIELD(CHAR 4),
4 FILLERI IS FIELD(CHAR 1).
4 RQ OR_ RM IS FIEW (CH R 3).
4 FILLEM2 IS FIELD(CHM I ),
4 RES (5) IS FIELD(PIC '9').
4 FILLER3 IS FIELD(CHAR. 1),
4 UCW IS FIELD(PIC 'B(12)9'),
4 FILLER4 IS FIEW( CHAR 2),

3 ALLOCATION(*) IS GRP,
4 FILLER5 IS FIELD(CHAR 1),
4 PROC_IDA IS FIELD(CHAR 4).
4 FILLER6 IS FIEW( CMR 1),
4 CLOKA IS FIELD(PIC 'B(12)9');

22 SIVIATION.RFI-- Tama= AL')
WCAION';

23 SIMW.TION.HDF2-p_id R/L resre time p-id time' H
# p_id time pid time';

2 4 S I M U J A T I O N .H D F 3 - - _ -_-- -- - ' 1

25 (FILLER1,FILLER2,FILLER3,FILLER4,FILLERS,FILLER6) -.
26 SIMEULATION. PROC_IDM MREL. PROC_IEK
27 SIIMUIATION. RESM -REQREL. RESM;
2S SIMULATION. CLOCK -REQREL. CLOCRK:29 SIMlATION. PRCIDA -SUBSTR( ALLOC. PROCID, 6,1);
30 SIMULATION. CWCKA -ALLOC CLOCA;

FIGJRE 6(c). Simulation Report Specification of the
Resource Allocation Module

.
4



- 45 -

I POST IExternal External
R

Dependriency arnvironowntI ++
-IMSI O f't

S~MAIL

MIL from Philosophers

External Environment
(Philosopher's modules)

a) Illustration of Dependency Edqe

I

1 p3. reql Internal(R " - p3. alloCl
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FIGJRE 7. Illustration of External Dependencies As Viewed
From the R Module
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THE OPERATION OF THE IMDE C01NPILER

The implementation of the configuration of Figure 2 requires

specification of each module independently, and its submission as

input to the MDEL Compiler. A brief description is given here of the

key problems and methods in the MOEL Compiler. The following two

chapters describe specification of modules and introduce the MODEL

language.

The previously developed MDEL Compiler (Prywes, 63) was extended

for concurrent progranming. It performs the following major tasks in

translation of a specification into the procedural program. After

syntax analysis, the compiler constructs a dataflow-like graph to

represent the specification in a convenient form. Based on the graph.

implicit information is derived and entered, checks are conducted and

an optimally efficient schedule of program execution is derived. The

optimized schedule is finally transformed into a procedural program in

PWI. The generated program includes also analysis of various

conditions of program failure, such as data type errors, absence of

expected records, etc., and recovery from such failures.

5.1 REPESENTATION OF THE SPECIFICATION AS AN ARRAY GRAPH

The specification is represented by an AXjM gxnh, where a node

represents the accessing, storing or evaluation of an entire array and

the edges represent dependencies among variables. The underlying

46
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graph of elements of the array may be derived from the array graph

based on the attributes of dimensionality, range, and forms of

subscript expressions, which are given for each node and edge in an

array graph. A data node has as attributes the ranges for its

dimensions and its data type. An equation node has as attributes

subscripts and ranges corresponding to the union of subscripts of the

variables appearing in the equation. A node A corresponding to a m

dimensional data or equation array represents the elements from

IA(,1,...,) to A(NI,N2,...,Nm) where NI...Nm are the ranges of

dimensions 1 to m respectively. Similarly a directed edge represents

all the instances of dependencies among the array elements of the

nodes at the ends of the edge and has as attributes subscript

expressions for each dimension. The edges have the subscript

expression for each dimension as attributes. The dependencies imply

precedence relationships in the execution of the respective implied

actions. There are several types of them. For example, a

hirzarght precedence refers to the need to access a source

structure before its components can be accessed, or vice-versa, the

need to evaluate the components before a structure is stored away.

Da den precedence refers to the need to evaluate the

independent variables of an equation before the dependent variable can

be evaluated. Similarly, =A 9pnnam of a structure (such as SIZE

of a dimension) must be evaluated before evaluating the respective

structure.

0

5.2 CHECKING COPLETNIESS AND CONSISTENCY OF A SPECIFICATION

*@ It is inevitable that the user will make mistakes in specifying a

computation, and it is necessary to have a dialog that helps the user

to formulate a specification and make corrections. The automatic

program generation can not be completed when a specification is

0 inconsistent or incomplete. Therefore checking of structural

consistency is conducted on a global basis with special focus on

"°°
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iterative and recursive relations which usually encompass many

entities in a specification. The specification-wide checks are

categorized into checks of completeness, non-ambiguity and

consistency. Incompleteness and ambiguity are detected in

constructing the array graph while special procedures check

consistency. The consistency checking of the entire specification may

be essentially regarded as "propagation" of data type, dimensionality

and ranges, from node to node. The problems discovered are described

to the user in terms of the very high level language specification,

without referring to programming details. The compiler is tolerant of

many kinds of omissions. Data description statements are generated

for variables referred in the equations but not described by the user.

Equations are generated to relate same named input and output

variables. Finally, circular logic is recognized by irresolvable

cycles in the array graph (discussed further below).

5.3 OPTIMIZATION OF PRODUCE PROGRAMS

In composing a specification of a computational task, the user

chooses a natural and convenient representation. It is up to the

MDDEL Compiler to map the user's representation into an efficient

procedural computer program. An overall flow of program events is

produced first in a skeletal, object language independent form called

a schedule. The final program generation phase translates individual

entries in the schedule into statements in the object language and

further optimizes the produced program.

The general approach to scheduling consists of creating first a

component graph which consists of all the maximally strongly connected

components (MSCC) in the array graph and the edges connecting the

KSCCs. The component graph is therefore an acyclic directed graph.

4 This graph can be topologically sorted. There is a large number of

possible linear arrangements of the schedule which have varying

* P... " . .
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efficiencies. The objective is to find a near optimal schedule.

This is done as follows. The subscripts for each node in the

array graph are determined. Iterations for these subscripts must

bracket the respective nodes to define all the values of the elements

variables in the array nodes. Each node must be enclosed within

loops, which are nested if the respective equations or data arrays are

of multiple dimensions. Next, attempts are made to enlarge the scope

of iterations. Nodes with the same range can be merged into larger

components. Merging scope of iterations may enable sharing memory

locations by elements of the same or related array variables. If it

is possible to retain in memory only a window of the entire dimension

of a variable, then the respective dimension is called virtual,

otherwise it is called 2 ical. When there is a number of ways that

components can be merged (for different dimensions) then the memory

requiremer..s of different candidate scopes of iterations serves as the

criterion for selecting the optimal scope. Virtual dimensions are

found by the present MOWEL Compiler only where the subscript

expressions used to reference variable are of the form (I-k) (I is any

subscript, k is 0 or a positive integer), or when the socalled

sumaine or sawoot indirect indices are used (Lu, 81]. The use of

sublinear indices is further explained in the resource allocation

exzmple.

The MODEL compiler attempts to decompose the MSCC by deleting

edges which represent dependencies already assured by the order of
iterations. If the MSCC is not decomposable than the user is advised

of the nodes and edges of the MSCC. It is up to the user to verify

that they do not represent an inconsistency, such as circular logic.

The other possibility is that they constitute a set of simultaneous or

recursive equations. In the latter case they are solved by

incorporating in the produced program a selected iterative solution

method (currently Gause-Seidel). This is discussed further in

connection with the cooperative computation example.
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Additional optimization is performed to reduce computation time

by further merging variables which have the same values into common

memory space. It is possible thus to eliminate statements that copy

values from one variable to another. Transformation of remaining

statements allows sometimes the elimination of entire iteration loops

[Szymanski, 84].

5.4 EXTENSIONS FOR CONCURRENT PROCESSING

In order to extend the MODEL compiler for concurrent progranmming,

four major extensions have been made.

5.4.1 E DEPENDENCY

The essential difference between a module to be computed

sequentially and concurrently is the impact imposed by external

environment. In a dataflow representation, this impact can be

represented as an external data dependency. An external dependency

statement (DEPENDSON) is designed to express such a relationship.

The specifier of a concurrent module (more precisely, a candidate

module for concurrent execution) must specify the modules external

requirement explicitly. The MODEL compiler can then use the same

process, as described previously, to verify the consistency of

external data references.

The external dependency, when entered into the array graph, may

cause creation of cycles. Such cycles provide a necessary but not

sufficient condition for consumable resource deadlock. The MODEL

compiler therefore conducts deeper analysis of initiating and
termination conditions implied by such cycles. It can then determine
whether the system is safe of consumable resource deadlocks. Else, it

incorporates an iterative procedure to solve them, thus prevents the

consumable resource deadlocks. This is described in detail in Chapter

16.

The implementation of the external dependency statement is given
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in Chapter 13.

5.4.2 THE MAIL AND POST FILES

MAIL and POST are the two new file organizations extended to the

MODEL compiler. The purpose of introducing the two files is to enable

a module to communicate with others concurrently. Because of the

high-level semantics of these two file organizations, the user is

isolated from the considerations of global inter-leavings of

computation events. The same static view as composing a sequential

file is utilized in composing the POST and MAIL files. The semantics

of the two file organizations complements the existing sequential and

index sequential file organizations. Implementation detail are given

in Chapter 14.

5.4.3 CONCURRENT ISAM FILE UPDATES

Sharing an ISAM file or database concurrently requires the use of

record locking mechanism, although the user does not "see" such

low-level detail.

Restricted by the available operating system, only one-record

locking is supported. That is, every record in a database is locked

when it is being updated. This extension ensures, if a MODEL

specification can be scheduled into one-record locking mechanism,

proper locking will be made automatically in the produced PL/I

program. Otherwise a warning message is issued. The user is advised

to incorporate multi-record exclusion algorithm manually. The

implementation details are given in Chapter 15. An example PL/I

program generated from a concurrent MODEL specification is given in

0 Appendix A.

5.4.4 ITERATIVE SOLUTION TO DISTRIBUTED SIMULTANEOUS EQUATIONS

This extension makes the concurrent MODEL more powerful in a

distributed environment. The MODEL language is based primarily on the

,0
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notion of equations. In many applications, problem is expressed as a

set of simultaneous equations distributed in a number of modules.

These module must then cooperate in an iterative solution process.

The MDEL compiler recognizes the need to use a single or multi-module

iterative solution and incorporates the communication protocols and

algorithms when necessary. Detail can be found in Chapter 16.

0



CWPTER 6

A SECOND EXAMPLE - COOPERATIVE COMPUTATION

6.1 SPECIFICATION OF INDIVIDUAL ECONOMETRIC MDULES

As mentioned previously, the concurrent computation in the second

example represents a simulation of economic interactions in the

Pacific Basin. The economies simulated and their corresponding models

are those of the USA, Japan, Taiwan, Korea, Philippine and Thailand.

Each model is represented in separate module. Due to space limitation

we consider in Part I a reduced econometric model, shown in figure 8.
The complete set of MODEL equations for each of these countries are

given in Appendix A.

Although the example of econometric model consists of only five

equations, it is generally characteristic of econometric models and

illustrates the full models given in Appendix A. It contains also

nine variables, five local and four global. The variables are listed

in Figure 8. Local parameters are in the files: Coefficient, Control

and Time-series. The Coefficient file contains the values of the

coefficients in the equations, assumed to have been previously

computed using estimation methods. The Control file contains three

parameters: PDTS, the number of periods in the Time-series file;

PD_SIM, the number of periods in the simulation (forecast); and DEL,

the number of periods from the beginning of the time series to the

beginning of simulation. The Time-series file contains historical

values for the endogeneous variables which are used as starting values

for the simulation. There are two files for exogeneous variables

(Local-exogen and Trade_in) and two files for endogeneous variables

-53-
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(Localsolution and Trade_out). The former are prepared as source

data and the latter are computed and constitute the target data. This

type of a model may be represented concisely by the simplified diagram

shown at the bottom-left of Figure 9.

Figure 9 shows the MODEL specification of the reduced econometric

model of Figure 8.

CCFFICENT CN-RCL

TI"HE SERIES

VARIABLES:

=-_TS TS.CONS ZEL Al 7C A5

I TS 50P
rsVX
TS PM

_R IN LOCAL EXOG. LOCAL SOL TR_OUT

EXTERNAL LOCAL LOCAL EXTERNAL
DEPENDENT EXOG . ENDOG. DEPENDENT

?D S I. EXOG. VARIABLES: VARIABLES: ENDOG.

VARIABLES: II CONS VARIABLES:
V11 ;OV INWV VX
PX 30P PM

Slm~,lified Scnematic :Iiaoram Key: -:CNS - :onsumption
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DP - cross Domestic Product
i - 3over.-len t Inves-ents

30V - ;overwniment Excenditures
VM - Volume of Imoorts
,rX - Volume of Ex-rorts

CCU:NTRY PM - Price Index of imports

A PX - Price Index of Exports

-'.ure R. A - du-ed Exanple of a Local :ounrry E-onometric .odel -7,ntr'? A)

I ...



-55-

/* HfADER "/

1 MODULE NAME: A;
2 SOURCE FILES: TIME_SERIES, CONTROL, COEFFICIENTS, TRADEIN,

LOCALEXOG;
3 TARGET FILES: LOCALSOL, TRADE-OUT;

/* DATA DESCRIPTIONS */
4 1 CONTROL IS FILE,

2 CRECORD IS RECORD
3 (PDTS,PDSIM,DEL) IS FIELD (PIC'999');

5 1 COEFFICIENTS IS FILE,
2 COEF_RECORD IS RECORD
3 C(13) IS FIELD (DEC FLOAT);

6 1 TINESERIES IS FILE,
2 TS_RECORD (1:20) IS RECORD
3 (TS_.CONS,TSINV,TSGDP,TS.VX,TSPM)ARE FIELDS (DEC FLOAT);

7 1 LOCALEXOG IS FILE,
2 EX ._REC (1:30) IS RECORD
3 (II,GOV) ARE FIELDS (DEC FLOAT);

9 i TRIN IS FILE,
2 TR_I__RECORD (1: 30) IS RECORD
3 (VM,PX) ARE FIELD(DEC FLOAT);

9 1 TR.OUT IS FILE
2 TR_OUTRECORD( 1:30) IS RECORD
3 (VX,PM) ARE FIELD(DEC FLOAT);

10 1 LOCAL-SOL IS FILE,
2 SOLRECORD (1:30) IS RECORD
3 (CONS,INV,GDP) ARE FIELDS (PIC'BB(6)9.V(6)9');

/*DATA PARAME'TRS/
11 SIZE.SOLRECORD - PDSIM;
12 SIZE.TSRECORD - PDTS;
13 T IS SUBSCRIPT;

/* EQUATIONS *I
14 CONS(T) - IF T > I THEN C(1) + C(2)*GDP(T)+ C(3)*CONS(T-1)

ELSE TS_CONS( T+DEL);
15 INV(T) - IF T 1 THEN C(4) + C(5)*GDP(T)+ C(6)*GDP(T-1) +

C(7 )*Ii(T)
ELSE TS_INV(T+DEL);

16 GDP(T) IF T 1 THEN CONS(T) + INV(T) + VX(T)+ GOV(T) - VM(T)
ELSE TSGDP(T+DEL);

17 VX(T) - IF T > 1 THEN C(S) + C(9)*PX(T) C(1O)*GDP(T-1)
ELSE TSVX( T+DEL);

18 PM(T) - IF T 3 1 THEN C(11) + C(12)*PM(T-1)+ C(13)*VN(T)
ELSE TS_PM4(T+DEL);

/*EQATIONS DEFINED EXTERNALLY*/
19 TRIN_RECORD(T) - DEPDIDSON(TR.OUT_RECORD( T));

FIGURE 9. Specification of a Reduced Econometric Model of a Country.

The header at the top of the tigure identifies the name of the

program module to be generated (A), and the names of the five source

and two target files. The description of the organization of the

files follows. The variable sizes of dimensions of data arrays are

defined in data parameter equations (statements 11 to 13). Namely,

the size or range of the lowest order (right most) dimension of the

4. . .. ..
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structure TSRECORD is equal to PD-TS, and the number of repetitions

of the local solution records, i.e. the periods of simulation, is

equal to PD_SIM. T is a subscript which denotes the period number of

the simulation. The specification concludes with the five econometric

equations in statements 14 to 1. The values of the variables for the

periods prior to start of simulation (Tc-DEL) come from the

Time_series file. Otherwise they are defined by the respective

expression.

EAn examination of the equations in Figure 9 reveals that

statements 15 and 16 form a set of simultaneous equations. If the

external dependency equation 19 is included, it forms another set of

simultaneous equations with statements 17 and 18. The equations which
specify in detail the external dependency are in external modules in

the global configuration. The cooperation of the Configurator and the

MODEL Compiler is necessary in implementing a solution process. This

is further discussed in the next chapter.

6.2 CONFIGURING A MULTI-ECONOMETRIC MODEL SYSTEM

There are two problems in synthesizing selected individual

country models. First, the economies of the selected countries are

also highly interdependent on the economies of other countries not

included in the study, and these interdependencies must be added.

Second, the data in the communicating files must be compatible in

meaning as well as structure. For instance, the periodicity of the

time series variables (i.e. quarterly, annual, etc.) and currency

units may vary from model to model. Also the export variable (VX) in

each model must be disaggregated to determine the appropriate portions

of the entire export of one country which become imports to each of

the other countries. These portions are computed in Project LINK on

the basis of the most recent bilateral trade share statistics. The

portions of exports from each country to one country are sumned to

form its total import (VM).

I.
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FIGJRE 10(a). Configuration Network For Pacific Basin Model

The economists engaged in the study composed an interface model,

which performs the above two translations. It incorporates a reduced

model of the economies of all the countries not directly included in

this study, to produce the data on imports to the countries in the

study. It also incorporates the trade share calculation to define

aggreg ite imports for each country as the sum of appropriate portions

*I



- 58 -

of exports from all the other countries. This interfacing function

form an additional module called WORM. It can be viewed as a case

of allocation of consumable resources - with source data on exports

viewed as requests for target data on imports. The WORLD model is

extensive and is omitted here in the interest of brevity.

The configuration synthesizing the countries in the region is

shown in Figure 10(a).

CONFIGURATION: PACIFIC;

F: USAkEOG, USATRIN ORG: MKIL
-, M: USA
- F: USASOL, TRPOUT ORG: NAIL;

F: JAPMODG, JAPTRIN ORG: MIL
- M:JAP
-, F: JAPSOL, TR_OUT;

P: TWMEMDG, TWIUTRIN ORG: MAIL
- : TWO
- F: TWSOL, TROUT;

F: PHIEDG, PUI1_TR_IN ORG: MIML
- M: PHI

- F: PHISOL, TR_ OUT;

F: THI_XXW, THI_TRIN OR;: MAIL
-, M: TI
-, F: THISOL, TR_OUT;

F: K]RAEOG, IU]_TRIN ORG: M4IL
-M. KRA

-, F: KRASOL, TR_OUT;

F: W WJKO, TR_OUT ORG: MIL
- : NRWD

-, F: VRWL_SOL, TR_IN ORG: POST;

F: TRIN
-, F: USATRIN,JAPTRIN,T1U.TRIIN,PHI_TR_IN,RA_TR_I,THITR_IN;

FIGZJR 10(b). Configuration Specification of Pacific Basin Model

4 This cooperative computation scheme assumes the use of a computer

network. Each model is computed in the computer of it's respective

"owner" organization. Solutions are conducted in parallel in the

respective computers. The distributed approach needs not be justified

by reductions in cost of realizing the computation, but by the

convenience to the developers which contributes to an improved system

o: -i :" ::-: :::; :::::i " ::~ l"Ii i i~i i i ii i
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through ready availability of global and local expertise and by

shortening of development time. The main gains are in rapid

development of an extensive experimentation, in depth evaluation and

better reformulation which lead to a more realistic simulation of

economy.

Although the centralized labor for synthesis has been eliminated,

there was still a need for individuals who have global understanding

of the entire system. As shown they are needed for formulating

bi-lateral or multi-lateral contracts, and for selecting modules and

files in composing a global system. There may be a number of

simultaneous global views, represented by respective configurations

formulated at the same or different locations.

I



CHAPTER 7

DISTRIBUTED SOLUTION OF SIMULTANEOUS EQUATIONS

As already mentioned in Section 4.3, the MODEL compiler

recoqnizes maximally strongly connected components (M1SCC) in an array

graph and performs analysis and design of solution methods.

Essentially it incorporates in the produced program a Gauss-Seidel

iterative solution method (Greenberg, 81]. The success of the
computation depends on convergence of the solution. The user may

optionally specify convergence conditions and maximum number of

iterations, otherwise the default value is used (presently 100

iterations). The generated code includes printing of a defined error

message if convergence in not attained.

In the above example there is one cycle which is local to each

module, consisting of equations 15 and 16 and the variables INV and

GDP (see Figure 9). There is another MSCC, much more complicated,

that involves all the modules and in each module it includes equations

17 and 18, the external dependency equation 19, the variables

PX, VN, VX, PM and the records TRINRECORD and TROUTRECORD. The

existence of an external dependency in a HSCC in a given module means

that there are other modules which participa a in the solution. These
modules are not known at the time that a program is generated by the
MODEL Compiler. Therefore it was necessary to devise an algorithm to

be incorporated in each of the modules to cooperate in the solution

with external modules, without knowing their identity, number or

interconnection pattern.

- 60 -
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The method applied by the MODEL Compiler is as follows. In each

module the MSCC with external dependencies includes record nodes.

They are represented in the generated program by read or write

operations. All the other variables in the MSCC in an individual

module are solved iteratively locally. The solutions of each module

of the external variables (VX, PM) are communicated to respective other

modules repeatedly until global convergence is attained. This is

illustrated in Figure lO(a) showing the circular connection of module.

Results of each global iteration are being communicated between

modules by the respective reading and writing operations. The WORLD

module uses all the values of export (TROUT) from (I-l)th iterations

of the iterative solution for evaluation of values of import (TRIN)

for Ith iteration.

In the case of an iterative solution involving a number of

modules, the MODEL Compiler also generates a protocol in the produced

program to determine when overall convergence, or excess of the number

of iterations, has been attained, and the iterative solution should be

terminated. Such protocol is generated locally in each module program

without knowledge of other modules involved. The problem is similar

to that of distributed termination (Dijkstra, 83; Francez and Rodeh,

82; Topor, 841. In our solution however we want to add termination

data only to records being exchanged between modules. Consequently,

we may not assume that new communication channels can be added as in

(Dijkstra, 83] or that existing channels are bilateral as in (Francez

and Rodeh, 82; Topor, 84]. The graph, although never constructed or

known explicitly, consists of nodes representing modules and directed

edges which represent the records being exchanged between modules.

The algorithm is incorporated in the module program. Each

record containing values of variable from one module to another has a

token added to it. The network may be viewed as a directed graph,

where the modules form nodes and where the tokens are propagated along

the edges. The network forms a maximally strongly connected component

as illustrated in Figure 10(a). Each node determines the value of the
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token sent either as equal to the minimum on the values of the

incoming tokens plus 1 or if it has not locally reached convergence

(or exceeded the maximum number of iterations) then 1. This

information is propagated, one node on each iteration, throughout the

network. If the diameter of the network is D, it takes D iterations

until the information reaches the furthermost module. In this manner,

D+1 iterations after all the module have reached convergence, the

value of the tokens would be D+l in all the modules and they all

terminate iterations simultaneously.

Description and derivation of the termination algorithm are given

in section 16.2 (Part III). Implementation techniques used to

incorporate the algorithm is described in section 16.3 (Part III).

0
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CONCLUSION AND FUJRE RESEARCH

As mentioned earlier, this dissertation intended to make two

points. First that the use of a new class of languages in concurrent

programming, which we characterize as very high level, equational,

definitional, nonprocedural or dataflow, is natural and effective.

The effectiveness is justified by the number of definitional

statements in the first example, especially the R module. The R

module uses 20 statements for defining the "maximum claim" algorithm

(for resource allocation problems in general). The naturalness can be

justified by the second example which takes almost literally the

economectric equations from the LINK project and the MODEL compiler

translates them into a distributed operational system. Also, the

studies done by (Cheng, 83] shows evidences of naturalness and

effectiveness in other aspects.

Second, that an automated program design methodology can verify

the specification and translate the specification into efficient

concurrent computation using existing computer technology. The

presentation through use of characteristic examples was intended to

convey the flexibility and practicality of the programming approach in

present day applications. The current implementation relies on modern

operating systems and computer architecture, currently VMS and

VAX-750. Theoretically the two system can be implemented on UNIX, or

any other machines.

In reviewing the new concepts in computer architecture we believe

that a similar methodology would be devised in the future for

63I
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implementing parallel processing in new generations of computers. The

independence of the language from the object computer architecture

makes it a good candidate for use for future computer architecture.

The dataflow approach exposes the possible parallelisms and can be

used for programming, for instance, for dataflow computer machines

[Gokhale, 831.

As noted, the research described in this dissertation has still

unsolved problems. The future research under this main direction is

summarized below-

i) the checking of convergence and parallel processing of recursive

functions,

ii) development of a system that will evaluate timing between

4 receiving and sending of records, to verify if real time system

timing constraints are satisfied, and to modify the design if not

CTseng, 83],

iii) further extend the semantic checking of a specification on MODEL

specification level and configuration level,

iv) further automate program generation by generating external

dependencies automatically,

v) more effective file organizations for general applications,

vi) more flexible definition of module execution time and more

verification on execution sequence of a configuration, and

vii) automatic generation of query sub-system by the Configurator to

facilitate on-line configuration information retrieval by using

some functional languages, such as PROLOG or LISP.

Also, the entire problem of automatic partitioning of a

computation into modules and files to attain a high degree of

parallelism is an as yet unsolved one which is assuming major

importance in Computer Science.
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CMAPTER 9

INTRODUCTION TO THE CONFIGURATOR

The function of the Configurator is to synthesize program modules

and data files that may be operated concurrently and/or distributed

geographically. Establishing communications between modules and

integrating them into a structured system remains a complex and error

prone task. we refer to this task as to the confiouration of a

system. The Configurator assists the user to verify the consistency

and completeness of the system and to synthesize the components into

an integrated system.

C
9.1 THE LANGUAGE - CSL

CSL, standing for Configuation Soecification Lnguage, is

designed for describing a network of modules connected through data

files. It is a "path language", because it describes a network by

listing its paths.

CSL aims at a broad range of applications, which include
configurations of sequential, concurrent/sequential, and interactive

systems. To avoid repeating paths in a CSL specification, only

nonredundant paths have to be specified. The system automatically

determines all the paths whose existence can be derived from combini.ng

those that are explicitly specified by the user.

I
- 66 -
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9.2 THE PROCESSOR - CONPIGURATOR

The C is the compiler of CSL. As mentioned in Chapter

3 (Part I), the Configurator has five functions: checking the input

CSL specification, scheduling execution of modules, evaluating

diamters of strongly connected components, generating JCL and PL/I

programs and generating user system documentation.

Chapter 11 of this Part is devoted to presenting the working

principles and translation mechanisms of the Configurator.

(9

E
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CHAPTER 10

THE CONFIGURATION SPECIFICATION LANGUAGE

In this chapter, we give the syntax and semantics of CSL

statements for describing a system configuration.

10.1 OVERALL GRAPH DESCRIPTION

A multi-module system may have sequential, concurrent and/or

distributed components. It is represented as a network of modules and

files. It can be visualized as a graph where the modules and files

are nodes and the relations of modules consuming or producing files

are edges. A CSL description of a network consists of a set of

statements describing the paths in the network. Each path is defined

in a statement as a chain of nodes connected by edges.

The overall structure of a configuration specification is:

<CONFSPEC : :- CONFIGURATION: <IDENTIPIER
(( DIAM : <INTEGER) )] ; <STATEMENTS)

<STATEMENTS, ::-<STATEMENT, C; cSTATEMENT) ]I ;
<STATEMENT) -:-<PATH_STATEMENT) I <SYNONYMSTMT

FIGURE 11. Syntax structure of a CSL specification

A specification has a number of statements, first it has a name -

an identifier, which is a string of letters and digits, beginning with

a letter. The length of an identifier is limited to eight characters.

The name of the configuration may be optionally followed by a

parenthesized parameter of the configuration, called diameter. The

diameter is needed only in the cases where there exist cycles in the

-68-
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configuration that represent communicating modules that jointly

perform a solution of simultaneous equations. Namely, where the

simultaneous equations are distributed over all the modules in

respective cycles. In such a case, it is necessary to evaluate the

neximum distance between modules in order to have orderly termination

of the iterative solution. The Configurator calculates the diameter

automatically for each strongly connected component (i.e. cycles) in

the configuration graph. The user may have better insight and wish to

over-ride the automatically evaluated diameter. This is further

discussed in section 10.8.

Next, there are two types of statements - to describe paths and

synonyms.

<PAT_STATEMENT) ::-<NODES> C-3 <NODES) 1*
FIGURE 12. Syntax of a path statement

The path statement is used to describe a path in the

configuration. The path statement consists of a chain of lists of

nodes connected by the symbol "-)" which represents an edge. A list

consists of one or more nodes. A path statement may contain only one

list of nodes. In such a case, the statement merely declares the

existence of nodes.

2 10.1.

M: A -), : U, V- M: B- F: W, X;A V : M-> F: W,X;

The above CSL statements describe the inter-connection between

three module nodes(A,B,C) and four file nodes(U,V,W,X). The

corresponding graph is shown below.

*i

* pT
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M F M F

+----I .- + O-,-----I--- 4--.--I A I- ,> U B-> II- IW l--

SI I I

+- > V I-I C I-I X 

We will say that the files coming into a module as being

"consumed" by the module and the files going out of a module as being

"produced" by the module.

A more detailed description of the path statement is given in the

following section.

The SYNONYM statement is used to unify differently named nodes

into one node, when these nodes actually correspond to only one

physical entity in a configuration.

The syntax diagram of a synonym statement is as follows.

(SYNONYS'T'Mr> ::-S: cNAME>, <NAME) C, <NA E).]*;
tNAME% : < IDENTIFIER).] 4IDENTIFIER

FIGURE 13. Syntax of a Synonym Statement

EamR]& 10.2.

5: A, B, C;

specifies that nodes A, B and C correspond to one physical entity. A

more detailed description of the SYNONYM statement is given in section

10.7.

S'
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10.2 NODES IN A PATH STATEMENT

The syntax diagray" of a node description is-

<NODES) , : <MODULE_NC.3ES> I (PILE_NODES>
<MODULE_NODES : :M : C+] <IDENTIPIER> (_ATTRIBUTES, ]

LEI ] CIDENTIFIER. (cMATTRIBUTES)>]]
<FILE_NODES>. :P : <(QUALIFIER). <IDENTIFIER) (cF_ATTRIBUTES>]

[,(CQUALIFIER,. ]<IDENTIPIER, [ FATTRIBUTES, ]

FIGURE 14. Syntax of a configuration node

There are two kinds of nodes in a configuration: MODULE nodes

and FILE nodes. A list of MODULE or FILE nodes is prefixed by M or P

respectively. Furthermore, a MODULE node may be prefixed by a "4"

symbol to indicate that the module's execution may be "added", i.e.

initiated manually, rather than automatically.

A FILE node can also be prefixed by the producer or consumer

MODULE name, to differentiate between files with the same name.

A node may have a number of optional attributes, such as type

(described further), physical file name, record size and device

description. When an attribute is not specified, a default value is

assigned to it.

10.3 MODULE NODE AW'RIBUrIES

The syntax diagram of a module node attribute is:

IcMATTRIBUTE> ::- ([<MTYPE> ] (<PHYSICALJNME><MTYPE> :=(TYP : < MTP > )
<MTP) ::-HUDLI W "MA
<PHYSICALNAME> -- NETWK_ADDR> ] C<DIRECTORY>]( <PNAME>J

[<SUFFIX),] [ <VERSION> ]
NETWK_ADDR> : :<- IDENTIFIER) ". :
<DIRECTORY, ::- ( cIDENTIFIER> (.<IDENTIFIER>]* )
<P_KNaE : < : IDETIFIER
<SUFFIX. : . <IDENTIFIERi
<VERSION> : : <INTEGER.

FIGURE 15. Syntax of an attribute of a module

Underlined is the default attribute.

S,,,
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10.3.1 MODULE TYPE ATTRIBUTE (MTYPE)

A MODULE node, in general, corresponds to a user defined function

which can be a program, a terminal, or a set of programs and

terminals. A module may consiae and produce file( s). A module of

type MDL, corresponds to an executable program produced either by the

MODEL compiler, or by a programmer. A node of type GRP is a

sub-system which consists of a group of lower level modules which may

also consume and produce file( s). It is represented as a single

module node. This feature can be used in developing large systems to

represent a hierarchy existing inside a system. The use of GRP type

nodes can also improve the readability of a CSL specification.

The analysis and scheduling phases in the Configurator assure

that all the modules re ATOMIC, meaning that they acquire all their

files at the beginning and release them at the end of processing.

This is generally true for the programs generated by the MODEL

compiler. However, a GRP node is generally not ATOMIC, in that its

constituent module nodes acquire and release files according to the

way they are scheduled by the Configurator. The use of non-atomic

module nodes may cause loss of efficiency in scheduling and loss of

the ability for conducting various consistency checking. The

alternative for the user is to provide more detailed information by

replacing a non-atomic node by its more elementary atomic

constituents.

* A node representing manual interactions - MAM, corresponds to a

terminal. A MRN module consumes a file produced by another module,

displays it on the screen of the terminal and produces a file

corresponding to data keyed in by the terminal operator. Introduction

of the 1MN type allows represent also manual interactions in a

configuration. The MAN type informs the Configurator to generate

special commands for connecting the I/O channels to the keyboard and

screen of a terminal.
I!
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10.3.2 PHYSICAL NAME ATTRIBUTE (PHYSICAltMAE)

The ,PHYSICALNAME attribute binds the logical name given by the

identifier of a node to a physical name of a program or a data file

existing in the network. The syntax of the command language for

Digital Equipment Corporation's VAX/VMS operating system is followed

here.

The physical name provides an address in a computer network, and

in a user's directory. It may optionally have a suffix indicating the

contents of the physical entity (explained below) and a version

number.

<NETWK_ADDR, is the address in a computer network. The addresses

should be known to the VMS network communication package which can

then setup communications between the specified sites. The default is

the local site where the Configurator is run.

<DIRECTORY) is the name of a directory or sub-directory of user's

account. The default is the root directory.

<P_NAME> specifies a physical entity in the directory. It may

differ from a logical name adding flexibility to naming in CSL.

<P_NAME) is an identifier up to 10 characters long. The default

<P_NAME is the logical name.

(SUFFIX) is a three character name attached to the PNKAE. It

may be used to indicate the type of data stored in the identified

file. The default is " "(blank). A user can add an arbitrary suffix

to a PNAME. Some of the predefined suffix names and their meanings

in VMS are summarized below.

PLI -- PL/I
FTN - FORTRAN
PAS- PASCAL
DAT- Data file
LIS - Listing file produced by compilers
CO - VMS command program

• / • • , _ _ - ., . . . • j " , , . . . =. . . ,, ; ,, ,,,. _ '. . . --
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<VERSION> is an integer and is used to indicate a particular

version of a file on a computer. On VAX, the VMS retains old versions

of a file which have to be explicitly deleted. One can address

different versions of a file by specifying version numbers. The

default is the most recent version of the file.

ZZ"R1& 10.3.

M: Pl=UPENN-750: :(YUAN.TEWP)TEST.PLI;IO

specifies that a module node with logical name P1 corresponds to

a file in a computer network with a computer address "UPENN-750", in

directory CYUAN.TE4P] bounded to the physical name TEST with suffix

PLI and version number 10.

10.4 FILE NODE ATTRIBUTES

The syntax diagram of the attributes of a FILE node is as

follows.

<F_ATTRIBUTE>: : (C<FTYPE>] (<PHYSICAL_NAME) ]
(CRECORDSIZE> ] P CF_DEVICE> ]

<F_TYPE ::= ( TYP : cPTP> )
(FTP) :: 2 M ISAM I POST I MAIL
<RECORDSIZE : :- RS: <INTEGER).
<F_DEVICE, :: DEV: Q=K I TAPE

FIGURE 16. Syntax of attribute description of a file node

0 A FILE node corresponds to an entire logical data structure

consumed or produced by a module.

* 10.4.1 PILE TYPE ATTRIBUTE (PF_TYPE)

The P_TYPE attribute determines the organization of a file and

thus the use of the file in the network.

* A SAN file is a data file existing as one entity. Namely, if the

file is exchanged between modules, the file must be completely

0
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produced by a module before it can be consumed by other modules. In a

path
M:MI-,.P:PI (TTP: SAM)-,M :M2,

let the starting time of the modules Ml and M2 be denoted by tsl and

ts2, and ending time by tel and te2, then the path implies tel 4 ts2.

In the current version of the system, it is implemented as a

sequential file residing on disk or tape, and thus a SAM file is

retained even after it has been consumed. Whether a file is on disk

or tape must be defined in the F_DEVICE attribute. If the file is on 5

tape, a number of modules may consume it only in sequence (with a

rewind in between). If the file is on disk, it may be consumed

concurrently by a number of modules. SAM is the default value of the

FTYPE attribute.

An ISAM file is a set of data whose individual units (records)

can be consumed and produced concurrently by many modules. Each

record, except when it is redefined (updated) by producing modules, is

retained in the file even after it has been consumed. There are no

timing restrictions on modules connected through an ISAM file. An

ISAM file is implemented as an indexed sequential file indexed by

keys, randomly accessible and can reside only on disk. An ISAM file

may have a number of separate versions ("older" and "newer")

represented by same named (or synonymous) ISAM file nodes connected by

edges, indicating sequentiality between producing and consuming

respective versions. In a path:

M:Ml -. F:P1 (TYP:ISAM) -) F:F2 (TYP:ISAM) -,M:M2,

then F1 and P2 are two versions of the same file and tel 4 ts2.

This is described further in section 10.5 which discusses the

semantics of the edges.

A MAIL file represents data being communicated between one or

several concurrent producing and/or consuming modules. Units of

communication called recors are produced one or several at a time,

and queued in the order of their times of production. The records are
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consumed by the consuming module in the same order. Thus a MAIL file

serves also as a queue when there are several producer and/or consumer

modules. The production and consumption of records may be concurrent

and is automatically synchronized, therefore synchronization need not

concern the user of CSL. In a path:

M:MI -) F:Fl (TYP:MAIL) -, M:M2,

it is required that tsl > ts2 & te2 4 tel.

Requirements of compatibility between specifications of

interfacing files are described in section 10.6.

A POST file also represents data being communicated in record

units, similar to a MAIL file. However, a POST file must consist of

records containing addresses of their destinations. Each record is

automatically delivered to the indicated destination - a MAIL file. A

POST file is produced by only one module but it can be connected to

any number of destination MAIL files being consumed by different

modules. This is further explained in connection with discussion of

the edges. The POST file records also have a compatibility

requirement described in section 10.6.

The address provided in records in a POST file must be the

physical name of the destination file. The construction of a physical

name is as follows.

i) For MAIL files that are source of a module which is not prefixed

by "+", the physical name is: clogical name>SNX

ii) For MAIL files that are sources of a "+" module, the physical

name is <logical name)S_MBXcreation time)..

In this way, the system can distinguish the different

instances of a "+" module which uses the same module and file

names. In the MODEL specification, the user can use the function

PHYSJNAM logical name), which returns a physical name bound to

the logical name at runtime, to define an address field in a POST

file.
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The selection of file types is based on the requirements in the

configuration for concurrency, distributed operations or supply of

data. These are discussed in further detail in section 10.6.

Note on implementation:

The file types discussed above can be implemented in many ways,

depending on the operating system features available on the target

computer. The SAM and ISAM correspond naturally to sequential and

index sequential file organizations supported by commercially

available operating systems. Under VAX-VMS, the MAIL and POST files

have been implemented via the mailbox facility. Under different

operating systems the implementation might be totally different.

10.4.2 PHYSICAL NAME ATTRIBUTE (PHYSICAL_NAME)

This attribute has the same syntax and semantics as the physical

name attribute of a MDUJLE node, described in section 10.3.

10.4.3 RECORD SIZE ATTRIBUTE (RECORDSIZE)

This attribute is only required for MAIL files. It defines the

maximum size of records. The default is 300 characters (bytes).

10.4.4 PILE DEVICE ATTRIBUTE ( FDEVICE)

This attribute is used only for SAM files. The default is DISK.

This attribute allows the Configurator to determine whether a

file can be consumed concurrently (DISK files) or have to be consumed

sequentially (TAPE files).
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10.5 EDGES

An edge represents consumption, production or causality

relationships between two nodes. The direction of an edge is

indicated by the "-" symbol in a CSL statement.

node node
I edge I

ISOURCEI IIRGET
SI I I

This section discusses the meaning of an edge, depending on the

attributes of its source and target nodes.

i) If the source is a module node and the target is a file node, an

edge indicates that the file is produced by that module.

ii) If the source is a file node and the target is a module node, an

edge means that the file node is consumed by that module.

iii) If the source is a POST file node and target is a MAIL file node,

the edge represents the distribution of records. The edge means

that the MAIL file may receive records from the POST file. The

MAIL file must be the source file of some module node(s). This

kind of an edge is required to be drawn from a POST file to each

potential MAIL file destination.

iv) If the source and target are both ISAM files, the edge indicates

that the source is an "older" version of an ISAM file and the

target is a "newer" version of that file. The "newer" version is

available only after the production and/or consumption of the

"older" version has been completed. This kind of edge allows a

user to indicate the sequential access to an ISAM file. Two ISAM

files or a long chain of progressively newer versions of an ISAM

file may be connected in this way.

Depending on the file type attribute, there are also constraints

on the number of edges that can be associated with each node. This is

depicted in the following table.

• 0, . - . : .. :_ . . " - . . . . . - - - . . . , - . . . . i
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FILE PRODUCTION AND CONSUMPTION RULES
I I

TYPE OF PRODUCZRS # OF CONSUMERS REMARKS

SAM I n-O,l I m)=O In + m > 0
ISAM I n>=O I m=O n + m > 0 I
MKIL n>l m>=O I n + m 0
POST 1 I mU=1 3

MODULE PRODUCTION AND CONSUMPTION RULES4 I
TYPE I * PRODUCED I * CONSUMED I REMARKSI " "

* MDL,GRP I n>=O I m-O I n + m ) 0
MAN n=O,l I m=O,l I n+m > 0

4 I U
TABLE 1. File and Module Production and Consumption Rules

10.6 REQUIREMENTS OF CONNECTING FILES

The user of CSL must select the type of a file which connects

modules based on the functional requirements of the configuration as a

whole. The selection of the file type must be reflected both in the

individual producing or consuming module specifications and in the

configuration specification. The functional requirements concern

concurrency, distributivity and sequentiality in operation of modules

(section 10.6.1). In addition, there are requirements of

compatibility in file structures as specified in the specifications of

the producing and consuming modules (section 10.5.2).

Finally, there are restrictions on modules which are initiated

manually (section 10.6.3).

10.6.1 CONCURRENCY, DISTRIBUTIVITY AND SEQUENTIALITY

The requirement and choice of file types should be guided by the

following:

i) If a copy of a file must be retained then only SAM or ISAM types

files may be used. A SAM file is used when the producer module

must precede entirely the consumer. And an ISAM file may be used

when such a constraint does not exist.

iI
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Sii) If the connected modules are to be initiated sequentially, one

preceeding the other entirely, the relationship among them may be

expressed as follows-

a) The path between the predecessor and successor modules

includes a SAM file, or

b) The path between the predecessor and successor modules

includes a pair of same named (or synonymous) ISAM files

connected by an edge in the direction from the predecessor to

-4 the successor.

iii) If the connected modules may be activated concurrently and/or

distributively, thei, they must be connected by either MAIL or

POST connected to MAIL.

Modules are generally scheduled to be executed as early as

possible, concurrently or otherwise, subject only to other sequential

dependencies in the configuration graph. Thus, the user of CSL must

C€ consider whether certain modules may be initiated at the same time or

one preceding another. MAN type modules must be concurrent with the

modules to which they are connected via files. Requirements of

sequentiality are usually imposed by the outside en'ironment (schedule

of work of people, etc.). Otherwise, it is generally more efficient

to operate modules concurrently and, in cases that do not involve

other considerations, it is preferable to use MAIL files.

Distributed modules can only exchange messages through MAIL and-I

POST files. Consequently, every SAM or ISAM file consumed or produced

by a module must be located in the same node( computer) in a network

with the module. Modules exchanging information through SAM or ISAM,

if resided on different nodes in a network, will signal an error.
I

10.6.2 COMPATIBILITY OF CONNECTING FILES

The definition of data structures of a connecting file must be

included in the MODEL specifications of all its producer and consumer

modules. These data structure declarations in the different modules

I
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may vary i some respects but otherwise must strictly agree.

i) RFM T Corresponding record structures must have the

same .ength and their respective constituent groups and fields

must ive the same dimensionality, range, data type, length and

scale Namly the trees representing respective record

struc ires in different module specifications must be the same.

HOweV 7, the respective records, groups and fields may be named

diffe -ntly.

ii) 2 ILE M: The order of different record structures in a

conne :ing file (frcm left to right in the file tree) must be the

same i all the specification of the modules connected by the

file. Also the total numbers of records with respective data

struc ire must be the same. Note that the number of records

need iot be constant. The nmber of records may also be denoted

for e *h dimension by ID-OF-ILE marker or by variables (with

I1D SIZE prefix). It is not required that the number of

dimen .one of respective records be the same, but their total

nmbe must be the same. Th ID-OP-PILE marker must not be used

to de )te the size of a vector of records in a lWlL file, other

means such as a constant or DD or SIZE prefixed variables, may

be us 1.

iii) VT EM ta OE B S: To achieve concurrent

opera .on of modules connected by MWL files (or POST connected

to MR ), the producer module has to produce one record, or a

group )f records, at a time and these records have to be consumed

also is, or a group of them at a time. This requirement

corn onds in the MODEL system to having virtual dimension at

the h ;hest order, and possibly immediate lower order, record

dimen one. Information about the types of dimensions for a

speci .cation is included in the MODEL reports. It is the

respc ibility of the CSL user to verify the above said

requi ments to be satisfied.

: .. _ i : i• - '
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10.6.3 IRNUAL INITIATION OF M8DULES

The modules that are to be initiated manually must be prefixed in

a CSL specification with the '+" sign. It is common in large system

that the number and duration of operation of some modules is not known

in advance. This is typical in modules that are connected to a MAN

type of module, i.e. where a human operator of a terminal

communicates with a module. Such a module is then initiated by the

operator. The number of such modules and when they are initiated

depends on the number and schedule of work of the terminal operators.

There are several requirements of a module prefixed by "+" as follows.

i) UM Mlm: The module may produce or consume SAN files provided
that they are not connected to other modules.

ii) on rent g2xatlon: The module must operate concurrently with

other modules as follows:

a) it my produce files only of type IRIL (or POST connected to

MAIL) or ISAR which may be connected to other modules

b) it ry consume files only of type POST connected to MIL or

ISAI which may also be c-nnected with other modules.

10.7 SYNONYM STATIEMHT

A synonym statement is used to identify the equivalence between

logical names. Synonymous names correspond to a single physical

entity.

Synonymous names must be all of MODULE or all of FILE, and must
have the same or complementary attributes. Synonymous file names may
be prefixed by the producing or consuming module name.

The synonym relation is symmetric, transitive and reflexive, i.e.

if S: A,B; and S: B,C; are two synonym statements, then S: B,A;,

5: B,C; and S: A,C; are implied. Also for every node X in a

configuration, S: X,X; is always assumed.

S ... o . . . _ o - . . . .. . . .. - .-.
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10.8 OPERATING THE CNFIGJRATOR

10.8.1 INVCKING THE CONFIGJRATOR

To activate the Configurator, a user calls: "ORCONP ,CSL

specification name ,". This executes the following VM commnd

procedure:

SASS ERMSGE.DAT EU5sGE /* Connect the ISAK error mo9 file -/
SASS 'Pl' .CN SAPIN /* Connect Pl(CSL specification) '/
SASS SYSOJT.DAT SYSSOLTPT /* Connect the timing/trace file t/
SASS SYSIN.DAT SYSSINPUT /* Connect the parameter file '1
SRUN CONP / Activate the Configurator '/
3DEASS E3KGE /- Disconnect error mag file
eDEASS SAP IN/ Disconnect CSL spec file
SDEASS SYS30UTPUT ft Disconnect screen output t
3DEASS SYSSINWPT /* Disconnect keyboard input '1

10.8.2 I/O FILE NMUNG CONVENTIONS

N CONVENTION I/O cC T.--

-nam.l".C01 I P file onAining a CSL
specification named "namel"

SYSIN.DAT I Parameter file
EMUG Z.DAT I Syntax error ISAM file

RPT.DAT 0 Report file
SYSOUT.DAT 0 Configurator timing and

debugging msage file
CONFERR.DAT 0 Error message file
"namel" .COM 0 Main JCL proqrm file
"nauml'O.PLI 0 Mailbox creation program

"naml"D.PLI 0 Mailbox deletion program
'namei'.COM 0 Individual JCL program file

TABLE 2. I/O File Name Conventions of the Configurator

The Configurator generates N+1 JCL prar, where N equals to

the -mber of modules in a configuration. Each individual JCL program
is named after the corresponding module name ("nmei" in the above
table) in the configuration and the main JCL program is named after

the name of the configuration.

The report file (IMT.DAT) way contain up to seven reports
generated by the Configurator according to selected options (see

section 11.3.5). The system timing and debugging message file

p
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(SYSO M.DAT) contains the timing of each processing stage, and if

debug option has been selected, the debugging messages from the

Confiqurator. The debugging messages are provided for debugging the

Configurator.

10.6.3 PAMETERS To TH WIRRJATOR

The Configurator uses a parameter file (SYSIN.DAT) which is used

to select options to perform or not perform certain functions of the

Configurator.

The parameters are summarized below.

PARAMfTER 4ERNING

1. HT/TRACZ --turn off/on the debugging messages
2. W/GCODE -turn off/on the code generation switch
3. L=/NLST ---do/do not list the CS! specification
4. gr /NG -- do/do not generate the configuration graph(Gf)

report
S. XC/NXRE --do/do not generate the CSL cross reference report
6. /HEM5SCC --do/do not generate MSCCN in Gf
7. 9./N -- do/do not generate the extended component

.8. w generate the module-file cross
reeenc report

9. jj=&/NJCLS --do/do not list the JCL and PWI program.

TABLE 3. Parameters to the Configurator

The defaults are underlined. The parameters can be positioned in

SYSIN. DAT in an arbitrary order in a line and separated by a blank or

any other delimiters. For example, the following can be the content

in a SYSrN.DAT: "XRZFM=,GE,GERCOD".

I I
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TE CONFIQJRATOR

The Configurator is in fact the CSL compiler. It accepts, as

input, a specification in CSL and produces executable PVI progras

for setting up communications between modules, command programs for

executing the configuration and documentation of the configuration.

11.1 STRUJCTURE

The main procedure of the Configurator is described in section
11. 3.

The Configurator processes a CSL specification through the

following stages:

C1] Syntax analysis and construction of the configuration graph

(section 11.4)

2] Completeness analysis (section 11.5)

(3] sequence checking (section 11.6)

(4] Scheduling (section 11.7)

(5] HSCC diameter evaluation (section 11.8)

(6] Code generation (section 11.9)

(7] Configuration documentation (section 11.10) *

The control flow of the Configuator is depicted in Pigure 17.

- 65 -
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11.2 PODUCTS-

The Configurator produces a number of outputs. They consist of a

set of configuration program and documentation. The set of program

is in two languages: JCL and PL/I. The reports and programs axe

listed in the Documentation and Code Generation columns at right of

Figure 17. The JCL programs can be categorized into two groups:

i) A main JCL program - which creates mailboxes and submits

individual JCL programs into an available operating system

(currently VM on VAX-750) and synchronizes the termination of

the JCL program with the terminations of all the modules in the

configuration.

ii) Individual JCL programs - one for each module node in the

configuration graph. Each individual JCL program synchronizes

its sequential predecessor(s), connects the logical file names to

appropriate physical files and activates a module. when the
module tezinates, the JCL program disconnects the files.

The P/I programs:

i) Mailbox creation program

ii) Mailbox deletion program

The mailbox creation program is activated by the main JCL program

to create necessary mailboxes before the system execution. Each

individual module also creates mailbox(es) for its own needs and

deletes the milbox( es) at its completion. This allows a module to be

initiated repeatedly without re-activating the mailbox creation

program in the main JCL program.

The mailbox deletion program is useful in the debugging of the

system. A test process(module) may fail to complete processing and

the failure may occur before the mailox deletion part in the program.

The mailbox( es) associated with the module may then contain some

unprocessed messages which may effect the next run. The mailbox

deletion program can be used to clear up the mailboxes. Therefore it

.I-
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must be activated manually in case of process failure.

Each run of the Configurator generates up to seven reports. The

user can select desired reports (see Table 3).

11.3 THE MAIN CONFIGURMTVR PROGRAM: COP

The main configurator program calls the procedures for respective

phases of the Configurator. The calling sequence of different

processing stages are shown in Figure 17. The calling sequence of

processing stages is from left to right in the figure.

11.4 SINTAX ANALYSIS AND CONFIGURATION GRAPH CONSTRUCTION (PROCEURE

NAME: SAP)

11.4.1 TM SYW AMLYZER

The syntax of CSL is described in the Extended Backus-Naur Form

With Subroutine Calls(EBNF/WSC). The EBF part defines the syntax of

CSL, and subroutine calls incorporated into it facilitate semantic

checking and configuration graph construction. The following is a

brief presentation of the syntax analyzer of CSL.

A recursive descendent parser generator is employed in processing

* of the EDNF/WSC description. The parser generator reads the EWP/WSC

description of CSL and generates a Syntax Analysis Program( SAP). The

SAP calls the embedded semantic subroutines while parsing CSL

statements. Semantic checking, error reporting and graph construction

are performed by those routines. This scheme has allowed easy

modification of the syntax and/or semantics of the earlier versions of

CSL.

The semantic routines can be classified into two different

categories.

I 7
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i) Semantic checking and graph construction

These routines recognize particular symbols, create new

nodes and construct a configuration graph while SAP is parsing

-the CSL statements. The syntactical restrictions that are not

expressed in EBNP are checked by particular routines. For

*" . example, if an identifier N is used as the name for a MODULE node

" and "F: 1" appears in the CSL specification, the routine CKAIE

will report this as an error(see next section).

ii) Error message routines

These routines perform syntax error reporting. They are

referred to in E ISC as /E(i)/, where i denotes an integer

representing an error code. They are always placed before a

routine that recognizes a keyword or a delimiter. SAP stacks

error codes (from the corresponding reference /E(i)/) whenever it

calls the routine. When SAP fails to recognize a certain symbol,

the code will be on the top of the stack. SAP then pops the

stack and calls a routine SMAIL which prints a predefined error

message indexed by that code. The list of all the warning and

error messages produced in syntax analysis can be found in

Appendix C.

The same lexical analyzer (LMC) is used in the MOOEL processor.

LEK is called by various routines from SAP.

In the EBNP/USC description, the semantic routine calls are

enclosed in "/" signs. The following is the complete EBNP description

of CSL.

* C0NFPflOG) :: - DERM) ((DZCLARATIONS3-/CLRERRP/ 1
/SW_DI/ cCONFPROG)

(ADER). :2- CONPIGJRATIOs: /E(10)/ <NM)- /OJN7tIN/
C DAN 2 cINTEGLR - /E( 1)/ ; /LNEMIV

eDECLARATIONS2 U - SMONYM fEC 1 /LIHUIUI
(DECLARATION). /E( 1)/ /LINDU /CLRAL/W

I E._DNMD /ENDINP/

(to be continued)
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(DOECIARATIONi, :lu K /E(4)/ /E(2)/ 4_NAM4ES),
I (F), /E(4)/ :/E(2)/ <FNAMES2-

( <ARROW3 /E( 11)/ (1(7), /STE(F/]*
(NJ :i'CH42 /1(4)1: /E(2)/ (ILNAMES30

IcPF- /Z(4)/ : /E(2)/ cPNGMESo
cARRV~i - /ARROK/

(K): :/REOV
(F) :~/RECF/

<NLjkAHS'% : HPIUAME) /ADDNAME/ CKMJAE)- /ADDRPN/ *
<FPJIAMES)- <:in f~kMI 1ADONAME/ <P-JHANE> /ADCNAE/ 1*

=-/E( 5)/,cNAMEL /STPtNAME/
L (stUFX) C <VSK I]
((/1(12)/ -cKORG),: /E(6)/ <HLTYP), /STORG/ ]cCKANE),

cFNAME >i 4cL0C>] [<DE'IICE> J (<DIRECTORY)-] /E(5)/
(KAN4E). /STLNAME/ ~. (NAME). /NDFLN1MW
S-/1(5 )/.cKAME3 /STPNAME/
(SUFIX)% [VSN]o ])
( /E(12)/ (KORG)o: /E(6)/ cF...RG> /STVRG/ ()j
RS: /E(7)/ <rNTEG9ER) ISTsIZE/ )]] <C! _NAME2

(cJR~i I 0 ~TYPE ITYP
,c:=- /GETLOC/

(DEVICE) : /GETDEV/
* DIRECTORY,>::- IGETDIRI

(SUFIX> /GL1TY'P/
('/3), - E1W / -iI (TEGER> /STVSK/
<CK..NAHEs : C0AE

cK_.TYP). M:AN I GNP I MDL

<SYNIIYM3-: S a/E(9)/ (cLJIA)/E(lO)/,/E(9)/-cLAN4E)-
I, /E(9)1(JAE] /MGM/L~

cr..NANE' : 'NAM) /STSNAME/ C. (KNME)o /1MFTJIN2/]
(NAME), /NMERflU
(INMEGER) : /I1ITPEC/

FIGURE 18. EBNP/WSC Description of CS!.

The following table contains all the semantic routines and their

functions in the above EBNF/WSC: description.

H AM FUNCTION

CLRALL Clear global and local graph pointers.
AROWRecognlizes the symbol -.

RIOM Recognizes "N4" as the prefix of node(sa).
REC? Recognizes 'F" as the prefix of node(sa).
ADD0M Adds the currently scanned name into the local graph.
STLMAME Stores a logical name.

* ICFUNN Modifies the stored logical name to be prefixed.
STMWEME Stores a physical name.
STIOVG Stores organization of a file node.
STSIZE Stores record size.
G1'PE Stores the "4." sign of a node.
GLTX4C Recognizes and stores the network address of a node.
G 'EV Recognizes and stores a device description.
GETDIR Recognizes and stores a directory description.

* GETITP Gets the suffix of a physical name.

(to be continued)
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STVSN Recognizes and stores a version number.
COGaE Checks the curently scanned nodes's attribute.
MGSYN Merges synonymous names into one node.
STSHANE Stores the current synonymous name in a list.
MHDFLAME2 Modifies the node name in a synonym list to be

prefixed.
ISMEREC Recognizes an identifier.
INTREC Recognizes an integer.

TABLE 4. Semantic Routines For CSL

11.4.2 DEFINITION OF A CONFIGURATION GRAPH

Let M and F denote two non-empty disjoint sets of elements. We

interpret elements of the set K as modules, and those in the set P as

files.

DWIiZTZQH 1.

A DI= CFIGION GRAPH is a graph Gf'-(Vf',Ef'), with a set

of nodes: Vf'-44 U F, and a set of edges Vf' e (M x F) U (F x

(F U M)).

For an edge e-cvl,v2 6 Ef', we will assume the following

interpretation:

i) If e E Ef' C (M x F) then it represents a production
relationship, i.e. the file v2 is produced by module vi;

ii) If e e Efl C (F x M) then it represents a consumption
relationship, i.e. the file v1 is consumed by module v2;

iii) if e e EV C (F x F) then the edge represents the casuality
relationship between file v1 and v2 as described in section 10.3.

0

I Z 2.

A pair of nodes v and w in a configuration is said to be DIRECTLY

EQUIVALDIT, denoted by v < ) w, if and only if:

i) v-w; or
i) there is such a SYNONYM statement S:(ul,u2,...uk) that for some

iI
|,

*" ..".i .- .
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i, j, v'-ui, W-uj. 0

We denote by - the transitive closure of < -. We will say that

v and w are SYNONYMOOULY EQUIVALEN if and only if v - w.

Clearly, - is an equivalence relation, defining the partition of

Vf' into equivalence classes Vf'/ -. It can also be extended to

equivalence among edges in Ef' by defining:

<vl,v2> - <v3,v4. iff vl - V3 and v2 - v4.

Hence the projection P: Vf' -> Vf'/ - transforms Ef' into Ef'/

and also the DIRECT CONFIGURATION GRAPH Gf' into the CONFIGURATION

GRAPH Gf defined as follows.

03.

A GRAP is a graph Gf-(Vf,Ef) such that Vf=Vf/

anEfEf'/ 0

We will denote by Nf the number of nodes in Gf and by Ef the

number of edges.

*11.4.3 cONS RION OF THE CONFIGURATION GRAPH

The construction of the configuration graph is performed during

syntax analysis stage.

0 To illustrate the composition process, we select the EBNF

productions of the path statement and a sample CSL specification

containing two path statements:

M: MX- F: TESTI;
M: M1 -, F: TESTI - M: M2 -) F: TEST2, TEST3;

We first show below a segment of the SAP program corresponding to the

productions of the path statement. The graph construction mechanism

is demonstrated through description of functions of various

6r
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sub-routines in the SAP program.

The following segment is a simplified EBNF description of the

path statement.

(PATHSTW', :'" cNF)/E(4)/ - /E(2)/ MP_NAMES) C (ARROW3

crFM_/E(4)/ : /E(2)/ cMF_NAMS)S /STM / ]"/E( I )/; /CLAL
<ARROWk - /ARROW/

- /RECM/
CF) ::n /RECP/
cMPNAMES- cMF_NAME- /ADDNAZE/ ,MF-A1_E> /ADDNAME/ I

FIGURE 19. Segment EBNF/WSC of the Path Statement

Following is the segment SAP program for PATHSTMT:

PATHSTMT: PROCEDURE RETURNS( BIT( 1));
CALL SMRK;
IF )CF( ) THDI DO,-

CALL E(4); CALL LMC;
IF LEXUFF : THEN DO;

CALL LEXENAB; CALL 3POPF;
IF M _JANES() THEN DO;

$SYS_002:
IF ARROW() THEN DO;

IF ICF() TE DO;
CA1L E(); CALL LE;
IF XBUFP - ':' TR]D DO,

CALL LENB; CALL $POPP; CALL E(2);
IF MV_NANS() TrM DO;

CALL STM;
GO TO $SYS_.002;

END;
ELSE DO; CALL SSUCCES; RE"TU('1'B); END;

END; ELSE DO; CALL $FAIL; REMRN('1'B); END;
END; ELSE DO; CALL 3SUCCES; RETRN('l'B); END;

END;ELSE;
CALL E(1)M; CALL LC;
IF LE03JF - '; ' THEN DO;

CALL LEXENAB; CALL VPOPF; CALL CLRALL;
CALL SSUCCES; RETUI( '1'B);

END; ELSE DO; CALL FAIL; RETtMWN('l'B); END;
EI"D; ELSE DO; CALL SSUCCES; RETU((''B); END;

ED; ELSE DO; CALL FAIL; RETURN('l'B); END;
DID; ELSE DO; CALL SFAIL; RETURN( 'O'B); END;
DID PATHST ;

IC?: PROCEDURE RETURNS(BIT(l));
CALL SNARK;
IF RECO()

STEN DO;
CALL $POPF; CALL SSUCCES; RETURN( 'l'B);

DID; ELSE DO;
IF REM')
TMM DO;

CALL SPOPF; CALL SSUCCES; RETURN( ' 1'8);
END; ELSE DO; CALL SFAIL; RETURN( 'O'B); END;END;

END NP;

(to be continued)

S
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MMNA1ES: PROCEXDURE RETURNS( BIT( ));
CALL SRK;
IF MJIAHE()
THE DO;

CALL ADOKME;
SSYS_003: ;
CALL LEX;
IF LEXBUFP - ',TE DO;

CAM LEXENAB,
IF RF-M () TlD DO;

CALL ADDNAME;
GO TO SSYS_003;

EMD; ELSE DO; CALL $SSKES; RETURN(''B); END;
END;ELSE;
CALL SSUCCES; RETURN( '1');

DID; ELSE DO; CALL SFAIL; RETURN('0B); END;
DND MFNPAES;

FIGU RE 20. Segment SAP of the Path Statement

E( 1 ), E( 2) and E( 4) axe the error message routines. They report

missing ';', unrecognized node name( lexical analysis error) and

missing ':' respectively.

S MRK is a routine that pushes a string of blank characters into

the error stack. Routine SSUCCESS empties the error code stack after

parsing a production successfully. Routine SFAIL reports syntax

errors. SPOPP is a routine that pope an error code off the error

stack after an error code related non-terminal has been parsed

successfully. For instance, if the call RECM is successfully parsed,

SPOPP will be called(see above).

LEX is the lexical analyzer. It produces a globally accessible

buffer, LEUFP, as output. The buffer contains a recognized symbol.

LEXDNAB is a routine that recognizes the symbol next to the currently

recognized one. It is used when user programimed "look ahead" is

needed. In fact, it is a lexical analyzer (LEX) in the form of a

function.

The graph construction is carried out by i) building a local

graph for each CSL statement, and ii) concatenating the local graph

with a global graph. Initially, the global and local graphs are both

null.
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Being a recursive descendent parser, SAP scans generally only the

current symbol and is not able to look ahead. Thus the semantic

routines have to store information that they need to keep track of the

previously parsed symbols.

A typical ermqple of a specification in EDKF is the design of

routines RZJX and REM.

Routines /RECW/ and /RECF/ perform the following tasks.

i) recognizing the key words P or N,

ii) comparing the keywords in the previous and current nodes and

reporting an error if a M-,K edge is found in the specification,

and

iii) storing the currently scanned key word for the next comparison.

Non-terminal MP_NA contains a routine (not shown above) that

searches a symbol table. for node type. If the node name has been

found in the table, the corresponding node in the graph is located and

the current keyword (N or P) is checked against the information stored

in the table. Error message will be issued if a difference is found.

Otherwise a new node with a specified keyword is created.

The function of routine ADDMM is to create a list of MOMLE or

FILE names by concatenating the currently processed node to the list.

The header of the list is globally accessible.

4 Routine S1W takes, as input, two lists of names constructed from

the two sides of a "-." symbol. It then creates an edge from each

node on the left-hand-side of the "-," symbol to each one on the

right-hand-side.

Routine CLRALL simply concatenates the local graph with the

growing global graph.

Now suppose that we have the two CSL path statements shown

before. Initially the global and local graphs are both null. When

SAP comes to call PATHSITI', it then calls routine IL. Since the
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current symbol is "N", routine NP returns "true" to PATHSTMT.
PATHSTM then calls E(4) which stacks error code "4" onto the stack.

E(4) produces a message reporting missing ":" in a CSL specification.

The SAP then calls LEX to get another symbol, and checks if it is ":".

If ":" is the current scanned symbol, SAP calls LEXIaE to pop the

code "40 off the stack; otherwise it calls SAIL to report the

missing ":" error.

In the chosen example, ":" does appear, so MPNAMES is the next

routine to be called in SAP.

Inside MPNAMES, routine ADOOM is called to create a single

node list. Since "," does not appear on the left-hand-side of the

"-," symbol, routine WJNUIS simply calls $SUCCES and returns to SAP.

The SAP then calls ARRO which is a routine for recognizing the

"-," symbol. In the chosen CSL example, ARUW must succeed. The

right-hand-side of the "-3-w symbol is then processed in the same way

until the SAP reaches SMW which creates a local graph frm both sides

of the "-" symbol. The snap-shot picture at this moment is shown

below.

Global Graph Local Graph

(null) P I.
I X 1--ITESTll

Similar to processing ":", the ";" is checked. Finally the SAP

reaches CLAAL which concatenates the local graph to the global graph

and sets the local graph to be null,

During parsing the second line, TESTl is identified as existing,

so the local process starts with this node taken from the global

graph.

Ua
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Before reaching routine CLRALL, we have the following situation:

Global graph Local graph

(MX)

V
+.-.44-+ -F--+ +--- +---+
Ii I-,(TZSTl) I Il I-,IoTZSTII-,1 I-ITEST21

-I-iI
-  

! "-I I-- "I I-

0-, I TEST31

The graphs after the completion of parsing line 2 are:

Global Graph Local Graph

I I I (null)

I
V

+-M-+ +-F--+ - +-P--+
I MI I-)-ITESTI-) I N2 I-),ITEST2I

+ - +-- + ---o-

**I

The mechanim used to process the SYNONYM statements is similar.

It locates the nodes specified in a synonym statement, takes then from

the global graph, and attaches them to the last node (still in the

global graph) in the statmnt.

0 11.4.3.1 DATA STPRIX JR U D IN T= GPH1 M COSTR CT

The data structures used in graph construction is shown as

follows.

DCL 1 NODE BhSED(NPTR),
2 TM CHAR(l),
2 DiBER FIXED BIN, / FOR 4CC FINDIN G/
2 WOWLINK FIXED BIN,
2 STATUS CHMB1), / + ./
2 N_LK3S PTR, /* POINTS TO SNTNO LIST *f
2 SYNHEADER PTR, /* TO T= =RD OF SYNONYM LIST '1
2 NAM CHM 10),

(to be continued)



-96-

2 PHE CR(lO),
2 WOC CIAR( 10),
2 DEVICE CR( 10),
2 DIRECTORY CMA( 20),
2 SUPIX CHAM 3),
2 VERSION FIXED DIN,
2 0RG cHA(4),
2 REC__SI - FIXED BIN,
2 SYN..LIS PTR, /* POINTS TO NEEXT SYNONYMOUS NODE I
2 PRELIST PTR, /* POINTS TO A LK LIST '/
2 SUCLIST PTR, /* POINTS TO A LK LIST '/
2 W1 BIT(l), /' FOR PREFIXED NAMES */
2 NEW BIT( l), /* FOR TRAVERSING "/
2 NEXT PTR; /w POINTS TO NEXT NODE IN SYMBOL TABLE */

DCL 1 T..KLIST BASED(LJ..PTR),
2 CLIAED-ORG CHAR( 4), /* UNUSED '/
2 STWMTO FIXED BIN,/* USED TO PRINT X-REFERENCE REPORT '
2 PT PTR, /* POINTS TO A P OR A K IN NODE t/
2 NEXT PMR; /* POINTS TO THE NEXT Lx STRUCTURE /

Gf is constructed through fields "PRELIST", "SUC_LIST",

"SYN-LIS" and "SYNJAD". Field "SYNIHEAD" points to the head of a

group of synonymous nodes. Every group of synonymous names is

connected through field "SYNLIS" which points to a next synonymous

NODE structure.

Also note that all the modules and files in a configuration are.

stored in two alphabetically sorted linked lists through the pointer

NEXT in structure NODE. One such list consists of all the (unique)

module names and the other all the (unique) file names. The two lists

are pointed by two global pointers M_HD and FHD respectively.

4 11. 5 CONP ANALYSIS (PROCEDURE NAME: CIPANA)

After the configuration graph construction, a completeness

analysis is performed.

DMzNzTImt 4.

A configuration graph Gf is said to be complete if and only if

i) no node is isolated, and

ii) each MAIL or POST typed ?ILE node in Vf has at least one producer

4"
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and consum r. 0

If a FILE node has no producers and consumers, the file does not

participate in the system and we conclude that the CSL specification

is incomplete. If a MDWIZ node does not produce and consume any

files, the module does not communicate with anything and is not part

of the system, we also conclude that the system is incomplete.

The MAIL and POST files are supposed to communicate among

modules. Lack of either a producer or a consumer indicates an

incomplete definition of the system.

The analysis is a simple one-pass scan through all nodes counting

the number of predecessors and successors of each node. Error

messages are issued if the Gf is found to be incomplete.

Other checks, such an on "+" modules and the checks on

distributivity, according to the rules stated in section 10.6.1,, are

also performed in the same procedure.

11.6 SEQUC BZXrG (PR 0CZM Mt : SEQM)

11.6.1 PRELIMINARIES

11.6.1.1 REIUMRDMIf

A dataflow analysis approach is employed to check the execution

sequence of a configuration to check for conflicts in scheduling of

nodes.

The limited information provided in a CSL specification, is due

to the assumption that each module is ATONIC.

S.S

An ATOKIC module is a module which acquires all of its input

files at beginning of its execution and releases all of its output

-"- - -------- - - ..-----i'....-.---.-- - - - -----..-
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files at the end of its execution. a

The user must assume that all the module nodes in the

configuration are atomic . In iny cases this may be an overly

conservative assumption. In particular this become apparent in the

case of GNP nodes as illustrated below. Further, the use of

non-atomic node may cause lose of ability to conduct some checks of

correctness of a configuration and also loss of some efficiency in its

scheduling. The alternative for the user is to decompose non-atomic

modules into atomic ones.

For instance, if

F: Fl (TTP:MIL) -, M: MG (TYP:GRP) -) F: Fl;

The GRP type module MH may have two different sub-configurations

each containing modules MGl and G2. They, however, lead to totally

different configuration graphs. Note that what appears as a cycle in

the above statement is in fact not a cycle in Figure 21(a), while

there is a cycle containing SAM file in Figure 21(b) which is not

detectable from the above stateent.

I i
- , ,- M-- I : - )----PI FI I-,IMl I I FlI-I Nul I-F21

+NRIL+ - +NIL+ ~ i- +-SAN+

-IM2 -1M2I **o -I I-o2 -' -- --I : I :"

(a) (b)

FIJPRZ 21. Two possible sub-configurations of a GRP module

* A module producing only ISAM file(s) does not impose any

execution sequence constraints, thus is not required to be atomic.

*

*

.oO - , - - -
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11.6..1. 2 TDE RRL RL&TIOUS

First, we define temporal relations that can be derived from a

configuration specification.

rn any timing of execution of a system described by the given

configuration, each module Xi is represented by a pair of time points

,efis,Nie,, standing for starting and ending times of its execution,

respectively. values of such starting and ending times are highly

inter-dependent due to existence of certain tmnGral relation between

execution times of modules. For our purpose it is sufficient to

consider the following three temporal relations.

=ZXZITZQU 6.

For any given pair of time intervals: Ml-<Mls,Kle) and

N2-<M2s,M2e2 we say that:

IC1 -i M2, iff Mle -c 2s

K1 - l2, iff 12s Ifls a Mae 0 Mle

MI I H2, iff 14s - Me. a Mie - 2e

We refer to the temporal relation "-i," as a z jmntW one, to

"-" as a mail relation, and to "II" as a 2"AxaU one. By ",-" and
-', we denote inverse of sequential relation and mail relation

respectively. Following is a transitivity table for the defined

temporal relations:

4

4o . . oO
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1 I

\ nt I I n o
Ir2\ I "> I I- I - i f I

no no o )j o~-
inf infnol ifo

I -> I -3 I no I -) I no I "> I
I linfol linfol I

I - I no I '= I no I <- I <- I
I linfol linfol I I

Table 5. Transitivity - relation r holding between and 3
assuming that Il 12 and 12 r2 M3 hold.

For example, if (-I -3 12) and (142 I1 N-3) hold, then we can

easily show that Mn - 3 an follows%

(M428 Mle) from definition of
(1429 I I3) from definition ofH
so (143s ). 1e), hence 143 -> Ml. C

other entries in the transitivity table can be proved similarly.

Sequential relation holds between modules which have to be

executed one after another. This relatioK exists between the producer

nand consumer of a S file or a sequentially accessedf

mail relation exists between a producer and a consumer module of

messages through a mail or post file. it indicates that the consumer

may start and before the producer and finish after the producer.

Parallel relation exists between modules exchanging messages. Note

that 14l-2 and 142-2141 implies 14111142.

There are five basic connections in a configuration graph (Gf).

1) ......-. 4 000000 +-
I 1-'i Pl 1-)i 12 1implies Ml 142

an -i4 oSAM o -e +l

ii) 4 000000 000000 --
I 4h1rou 71 1i 1r2 1.I 142 nimplies tha Nhe12

Where an means that the edges can be in either or
both directions.

tht6-I n -• l
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iii) - 000000 ooooo10000
--I P I 2 implies ML-, 142

iv) 0-..)

LI :P O OAILO --- 000000 000000I (1 I-,7 rlI-, r 2 I-, n2 implies 3(1.-) 142

v) +- oooooo 44

I I-'1 F1 !--1 2 1 implies no temporal relation.
+---- 0oSANo

To compute the temporal relations among all the module nodes in a

configuration, we do the following.

I. Initially we derive all the temporal relations assumed by the

basic connections stated above. Note that the derivation

includes the case when a module is defined as manually initiated

(i.e. prefixed by +").

Additionally, we assume that for every module Mi, Ni IMi.

II. Next, all consequences of constraints imposed in I are computed.

Note that whenever we find 4i-)Kj and NJ-).i, we derive Mil 'j.

The parallel relation is an equivalence. Clearly it is

transitive, symmetric and reflexive. Thus we can consider an image of

the sequential and mail relation under the projection mapping a set of

modules into a set of module equivalence classes under 11. It is easy

to s that the equivalence classes are groups of modules enclosed in

JSCCS connected only by post and mail files. We will later refer to

the equivalence class containing module Mi as to the component of Mi.

The derivation of temporal relations is used to perform sequence

and consistency checking.

11.6.2 SEQUENCING ANALYSIS

The aim of the analysis is to locate modules that have an

l "i

l" "./ .. " .i ." .. "..... ... ".
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inconsistent activation sequence due to sequential cycles in an 1SCC

in Gf.

Recall that cycles resulting from circular communication of

records are detected by the MODEL compiler based on external

dependency statements.

Discussed below are two forms of inconsistency and their

detection.

11.6.2.1 CIRCULAR PORN INCONSISTENCY

A circular form inconsistency occurs as the result of

4 inconsistent accessing of sequential files, or sequential access of

ISAM files.

IDIZ N 7.

A circular form inconsistency is indicated by a module in a

configuration whose execution may precede only after its own

termination. a

It is not difficult to mm that a configuration containing

circular form inconsistency if and only if there exists some module Mi
in the configuration, such that Mi-Ni± can be derived from sam

initial temporal relations in a configuration.

In order to efficiently detect all possible circular form

inconsistencies in a configuration, we introduce another graph

representation.

A GRAPH Gc-(VC,Ec) is a graph constructed from Gf

satisfying: Vc - Vf/It, and Ec - Vf/It. a

Again, it is not difficult to see that a Gf contains any circular
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form inconsistency, if and only if there exists a cycle in Vc.

As mentioned, every component in Gc is an equivalent class, which

corresponds to a 1sCC consisting modules strongly connected by POST

and MKIL (file) edges. The following algorithm finds such MSCCs in

Gf.

Alaorithm I. Vc construction (Procedure name: BVC)

Input : Gf
Output: Vc
1. Let COUI'-, STACK-empty and TYP(x) be the

TYPE attribute for a node x.
2. Set all the nodes in Gf to be 'new".
3. Do the following while there is a "new" node x in Gf:
4. Call search(x).
5. End. 0

Search: Proc(ND) recursive;

11. Set ND to be "old".
12. Set ND.dfnumber'COUNT.
13. Set ND.lowlink-ND.dfnumber.
14. PUSH(ND) onto STACK.
15. COUNTWCOUT I.
16. Do the following for every successor z of ND.
17. If TYP(ND) # "ISANE a TYP(ND)pi "SAM"
18. then do;
19. If z is "new"
20. then do;
21. Call search(z).
22. ND. lowlink-min( ND. lowlink, z. lowlink).
23. End.
24. Else do;
25. If z.dfnumber < ND.dfnumber & INSTACK(z)
26. then ND. lowlink-min( z. dfnumber, ND. lowlink).
27. End.
26. End.
29. End.
30. If ND. lowlink-D.dfnumber
31. then do;
32. Do the following until P-ND.
33. P-POP(STACK).
34. Call ADD_COMP(P).
35. End.
36. Call ID_COMP(ND).
37. End. 0

* ADDCOMP is a procedure that creates a list of elements that

belong to a MSCC. Procedure END_CONP marks the end of the MSCC.

This algorithm is a variation of the depth-first search

algorithm. Its correctness and complexity proofs can be found in

0
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(Aho,74]. The complexity is MAX(NfEf). Line 17 ensures that the

traversing on Gf is conducted only on connections implied by -

relations (through POST and MAIL files).

Algit 2. Construction of Ec. (Procedure Name: BEC)

Input : Vc, Gf
Output: Gc

1. Do the following for every component node P (of Vc).
2. Do the following for every element e in P.
3. If successor(e) is a file node
4. then do;
5. If TYP( successor(e) )=ShM or MAIL or POST

and successor(2)(e) j* nil
6. then find the component node SC which contains
7. successor( 2 )( e) as a member and make

an edge from C to SC.
8. If TYP(successor(e))-ISAM and TYP(successor(2)(e))=ISAM
9. then do;
10. if successor(3)(e) $ nil
11. then find the component node SC which contains
12. successor( 3 )( e) as a member and make

an edge from C to SC.
13. if predecessor x of successor(2)(e) # nil
14. then find the component node SC which contains x
15. as a member and make an edge from C to SC.
16. End.
17. End.
18. End.
19.End. 0

Note that line 13 of the algorithm tests if a target node of an

ISAN F-F edge has any predecessor, if it does, a new edge in Gc is

created (see definition of basic connections and definition of Gc).

Algorithm 2 has complexity O(Nc*Nc), because every node in Gf may

be connected to every other nodes in Gf.

The data structures for constructing Gc is as follows:

DCL 1 COMPNODE BASED(C_PTR),
2 COMPNO FIXED BIN, /* COMPONENT ID */
2 NEW BIT( 1), /* FOR MSCC FINDING 'I
2 DFNUMBER FIXED BIN, /* FOR HSCC FINDING '/
2 LOWLINK FIXED BIN, /* FOR MSCC FINDING '/
2 SCDED BIT(1), /* MRRK-1 IF SCHEDU /
2 PRES FIXED BIN, /* NUMBER OF PREDECESSORS */
2 ELELIST PTR, /" POINTS TO A CLIST *1
2 SUCLIST PTR, /' POINTS TO A LK_LIST /
2 MAX_D FIXED BIN, /* DIAMETER */
2 NEXT PTR; /* TO NEXT COMPNODE '1

DCL 1 CLIST BASED(CLPTR),
2 ROOT MK BIT(l), /* FOR MSCC FINDING 'I
2 NDPOINT PTR, /* POINTS TO A NODE STRUCTURE */
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2 NEXT PTR; / POINTS TO NEXT C.LIST 'I

The list of all components in Gc is pointed by a global pointer

COHP-ND.

After the construction of Gc, the error detection routine

(SEQERR) first finds all the MSCC in Gc using the same algorithm as

algorithm 1 without line 17 and then use the following algorithm to

report error.

Alco u 3. Report Sequencing Error.
(Procedure Name: RPTERR).

Input : List of MSCCs in Go.
Output: Error message, if any.

1. Do the following for every member x in the list of MCCs.
2. If x contains more than one element then ERROR (SEQl).
3. If x has an edge in Gc which leads to itself then ERROR (SEQ2).
4. End. 0

The error messages are shown as follows:

(SEQl) AN INCONSISTN muLTI-NODE MSCC OUND IN CONFIGURATION
CONSISTS OF:

- element 1
- element 2

(SEQ2) AN INCONSISTENT COMPOMNENT FOUND IN CONFIGURATION
CONSISTS OF:

- element 1
- element 2

Note that if no error is detected, Vc is used in diameter finding

calculation (section 11.8).

11.6.2.2 NON-CIRCULAR FORM INCONSISTENCY

Non-circular form inconsistency can be depicted as follows.

:/S
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1 1 1

IM I 
vv v I

4-----+

Fl and F2 are sequential files. Both Ml and M2 consume files P1

and F2. It is necessary to schedule Ml and M2 sequentially.

We will refer to the problem as SFS (Sequential File Sharing).

A solution is to impose a sequential relation between Mi and M2.

The following algorithm identifies the problem and resolves it if it

is possible.

&jgrjthu 4. Solving SFS problems in Gf. (Procedure name: SLVSFS)

Input : Gf and Gc
Output: A modified Gc, if a solution is found

Data structure used:
A queue Q of component identifiers.

Let Si be a list of files with type-"SAM" and device-"TAPE"
which are consumed by module Mi.

Lot PRi be a list of component identifiers preceeding a
component Ci.

Functions used:
PUTQ(e) is a procedure which puts e to be on the end of Q and
TAKEQ() is a function which returns the first element in Q.

1. set COUT-0.
2. For all module node Mi in Vf do the following:
3. Set S -p
4. For all predecessor v of Mi with device-TAPE" do:
5. s - s n (v).
6. End.
7. If S contains more than one element

than do;

9. Sct -S.
10. End.
11. End.
12. If CONT3i
13. then do;
14. set Qepy
15. For in Vc do the following:
16. If Ci has no predecessors then PUTQ(Ci).
17. Set PRi
19. Set Ci - "new".

' i
"-* -" "i " - - .' ' " • " i -' : -" o
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19. End.
20. Do while Q is not empty:
21. Ci-TAKEQ(.
22. For all successors Cj of Ci do:
23. PRj - PRj U PRi U (cj). 2
24. If Cj is "new" then PUTQ(Cj).
25. Set Cj - "old".
26. End.
27. End.
29. For i-l to COUNT do:
29. For J-i+l to COUNT do:
30. If Si n Sj has more than one element then do:
31. Let C1 be the component containing Si and

Ck be the component containing Sj.
32. If Cl-Ck then report EROR (SF51).
33. If C1 A PRk & Ck A PRI
34. then do;
35. Add an edge from C1 to Ck in Goc.
36. Call COP k, 1).
37. End.
38. End.
39. End.
40. End.
41. End. 0

CORR (k,l) recursive:
PRk - PRk U PR].
For all successors Cx of Ck call CORR(x, 1).

End. 8

This algorithm first finds for each module a set of "TAPE"

predecessors (lines 1-S . If variable COUNT is greater than one, it

implies possibility of existence of SPS problem in Gf.

Lines 14-27 compute the transitive closure of "-." relation along

every path in Gc and associate the computed results with each

component. In other words, for all components in Gc, if Ci-)Cj then i

e PRI.

Lines 28-38 compute pairwise intersection among all the module

nodes that have Si containing more than one element. If the

intersection of Si and Sj contains more than one element, the two

modules Mi and NJ have to be in a sequential relation. If Mi and Nj

are in the same component, no sequential relation can be imposed (see

definition of Gc); an error is reported. Line 33 tests if Mi is S
sequentially related to NJ in either direction. If they are not

related, a new edge is added in Gc to impose a "-." relation among Ni

and J, and transitive closure of newly added relation is computed by

procedure CORR.

S
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Note that the sequence of imposing sequential relation is not

important in finding the solution for a SFS problem.

-9.

A solution for a SF5 problem is a partially ordered set Q of N

modules sharing M sequential tape files, where N,1 and M1,1. And Q is

compatible with Gc - the Gc including Q is acyclic. a

Proposition I? If Algorithm 4 does not report error, then either

there is no SFS problem in Gf or it has found a

solution of the SF'.

Proof.

If Algorithm 4 does not report an error, this implies:

i) The condition in line 32 is falsified

- If a Q is found, it is compatible with Gc.

ii) There are only two cases existing from lines 33-36:

a) The condition in line 33 is falsified

-, there exists a sequential relation between the Cl

and Ck in Gc.

b) The condition in line 33 is true

- lines 35 imposes a sequential relation from Cl to Ck.

- If the condition in line 32 is not true -, A Q is found. 0

Proposition 2: If there exists a solution for a SF5 problem, then

Algorithm finds it.

Proof.

If a solution exists, then Q exists and it is compatible with Gc.

Suppose Algorithm 4 does not find Q. There is only one possibility-
S
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line 32 reports an error.

The condition in line 32 is "Cl-Ck"

- there exists two elements Cl,Ck in Q, such that CIi Ck.

- If the condition in wrongly programmed, then lines 33-38 are

executed. From Proposition 1, either Cl-,Ck or Ck-i-C will be

imposed. In conjunction with Cl Ccr, by the definition of Gc,

there must be a cycle in the Gc including Q - contrary

to the assumption.

- If the condition is correctly programmed, then Q is not

compatible with Gc - contrary to the assumption. 0

The complexity of the algorithm can be analyzed as follows.

Lines 1-6 take UK*(Nf-mK) steps to compute Si', where NM is the

number of module nodes in Gf.

We assume that the graph Gc is cycle free. Therefore lines 10-21

take Nc+Ec steps to coute PRi' s.

Finally lines 23-35 takes at most Kct( n*( n-l )/2) steps to check

all the possible pairs of modules, where n denotes the number of

modules consuming more than one taps file.

The total complexity of the algorithm is therefore O(Nc*n*n).

11.7 SCHEDULING (PROCEDURE MANE: SCHDULE)

11.7.1 MORE CONSISTENCY ANALYSIS

A configuration that has passed the sequence checking may still

cause some problem at runtime. For example, the following

configuration is inconsistent in that we can derive two conflicting

temporal relations from it: MNlM2 and MI-3M2.

0

i

.1
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I I
V V

k configuration is inconsistent, iff there exist two modules Mi,
Njin Gf, such that Mi-,N can be derived by one path and )Lt-3Aj or

N-Ni, by some other(s). 0
Note that the inconsistency definition includes circular form

inconsistency.

Using the similar idea for inconsistency detection, the above

definition calls for a new extended parallel relation III which holds

among every pair of modules Mi and NJ either Mi-). j holds or Nj-)iti

holds. Evidently I II is also an equivalence relation and the

equivalent classes under III properly include the equivalent classes

of II.

To verify the consistency of a configuration, we define the

following graph.

=ZINMQK 11.

An EDm CQMQOMUT GRAP Ge-( Ve,Ee) is a graph whose sets of

nodes Ve and edges Es are defined as follows:

e- Vf/III

Ee- "-i'/l I or in other words, cC1,C2, e Ee, iff there are

such modules Ml e Cl and M2 e C2 that Ml -, M2. a

We will denote the number of nodes in Ge by De and number of
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edges in Ge by EGe. Now it is also not difficult to see that if Ge is

cycle free, then the execution of a configuration is feasible.

The detection of an inconsistent configuration is accomplished by

first constructing Ge and then finding MSCC in Ge (using the sam

algorithm as for Gc construction). Clearly, all the module nodes in

an extended component can be initiated at the same time by the

definition of -> relation.

11.7.2 SCEDULING

To achieve maximum concurrency, we start execution of each module

as early as possible. The only delay on initialization is due to the

sequential relations existing between modules.

By the definition of Ge, we can see that Ge can be used directly

as the schedule graph.

Following are the algoriths for Ge construction.

&Jgujitu 5. Construction of Ve. (Procedure name: BYE)

Input : Vc, Gf
Output: Ve (also referred as a set of extended component nodes).

1. Set all the Mi nodes in Gf to be "new".
2. Set all the edges in Gf to be "new".
3. Do the following for every member Qi in Vc which contains

"new" nodes.
4. Allocate a component node P for Qi and make all the module nodes

in Qi be the element in P.
5. Do the following for every ele mnt e in P.
6. Mark e "old".
7. Do the following for every predecessor or successor x of e

which is "new" and connected to e by a "new" edge.
8. Mark x "old".
9. Mark the edges e-,x and x-,e "old".
10. If TYP( x )-MIL or TYP( x )-POST
11. then make x the new element in P
12. End.
13. End.
14.End. 0

&1g2X± 6. Construction of Ee. (Procedure name: BEE)

Input : ye, Gf
Output: Ge

|6 1. Do the following for every component node P (of Ve).
2. Do the following for every element e in P.

i"I

" , ,I, . " -" , . • . .. . . ... ,. T. ... .'. .. .., ., . ... ....
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3. If successor(e) is a file node
4. then do;
5. If TYP(successor(e))-SM and successor(2)(e) jo nil
6. then find the component node SC which contains
7. successor( 2 )( e) as a member and make

an edge from C to SC.
S. If TYP(successor(e))-ISAM and

TYP( successor( 2 )( e) )-ISAN
9. then do;
10. if successor(3)(•) jO nil
11. then find the conent node SC which contains
12. successr( 3 )( e) as a member and make

an edge from C to SC.
13. if predecessor x of successor(2)(e) jA nil
14. then find the component node SC which contains x
15. as a ember and make an edge from C to SC.
16. End.
17. End.
18. End.
19.End. 0

In constructing Ve, in the worst case, the algorithm traces every

node and edge in Gf exactly once. Thus the complexity of the

algorithm is O( Nf+Ef).

.In constructing Ee, the function successor(k)(e) returns the k-th

successor of e. In line 7, the algorithm creates edges derived from

SaM file connections in Gf. Lines 10-16 create edges implied by ISAN

P-F causality relations.

The complexity of construction of Ee is O(NDe*NDS).

The data structures for Ge construction is the same as for Gf
provided the field !ULLKS is used to point all the elements in an

extended component. The list of Ve is pointed by the global pointers

EcO4_PJD.

The following algorithm reports inconsistency error.
&jggzj== 7. Report Inconsistency Error.

(Procedure Name: CSTERR).

Input : List of MSCCs in Ge.
Output: Error message, if any.

1. Do the following for every member x in the list of MSCCs.
2. If x contains more than one element then ERROR (SCDl).
3. If x has an edge in Gc which leads to itself then ERROR (SCD2).
4. End. 0

Detailed error messages are shown below.

S

K
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(SCDl) CYCLES FOUND IN A SCHEDULE GRAPH CONSISTING OF:
-PAR NODE: element 1-PAR NODE: element 2

(SCID2) A SI] LE cy tz IS FON IN A scmr GRAPH CONSISTING OF.
-ELE: element I
-ELE: element 2

11.8 3SCC DIAMETER EVALUATION (PROCEDURE HNE: FVIAX)

The diameter of a MSCC in the configuration graph is used by the

termination control algorithm for terminating iterative solutions of

distributed simultaneous equations (described in Part III).

DEITION 12.

Let p( Mi,Nj) be the number of module nodes in the shortest path from a

module node Mi to a module node NJ, and N be the number of module

nodes in a MSCC. The DIANETER of a MSCC is equal to

where KWL Mi) is defined as

1mXupMi,Nl),p(M,2).....p(Mi,MN)). o

In the current implementation, the Configurator computes the

diameter for each MCC found in a configuration graph and passes this

value to each individual module through a logical name assignment JCL

command:

SDEFINz INXD "diameter".

0
The individual modules can then get the diameter through the

logical name MAXD.

To compute the diameter of a graph, we need to find the lengths

of the shortest paths between any two nodes in the NSCC. There have

0"
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been a number of algorithms proposed for performing this task, usually

with complexity O(N**3) CBerztiss, 71]. Since we expect that in

majority of cases, a MSCC has the number of edges proportional to N,

rather than N**2, we selected the following algorithm with complexity

O( WE).

&1g8zi~ m S. Finding diameter of a MSCC. (Procedure Name: FDMAX)

Input : A MSCC (from algorithm 1)
represented as a set of multi-linked lists

Output: Diameter (MAX) of the MSCC

Data structure used:
A queue Q with a pair of integers as elements: (e,d),
where is the identifier of a node and d is the distance
value.

Let TAKEQ() be the function returning the pair of first element in Q,
and PUT(e,d) be the function that puts e at the end of Q, d is
interpreted as the distance of e from the root.

1. X-O.
2. Do the following for each module node Mi in the MSCC:
3. empty Q.
4. set all elements in the ISCC to be "new".
s. PtfQ(Mi,O).
6. Do the- following while(Q is not empty).
7. Let (e,d)-TrAKEQ().
a. For each successor succ of e do.
9. If suce is "new"

then do;
10. Set succ to be "old".
11. If succ is a module node

then do;
12. PUfQ(succ,d+l).
13. If d 0 !GX then MAX-d+l.
14. End.
15. Else call PUTQ(succ,d).
16. End.
17. End.
18. End.
19. End. 0

The above algorithm correctly computes the diameter of a MSCC.

Proof.

Note that in the maximum distance calculation, the file nodes are

"transparent", i.e. a path Mi-FI- K) is of length 1 rather than 2.

The algorithm uses a global variable MIX for storing the final

result. MX is constantly modified during the processing (line 13).

We must compute ML for every module node in the MSCC. This is
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done by lines 3-19. Line 5 puts the "root" of a search tree (Mi) into

Q. Lines 6-18 find ML( i). The search tree is constructed by using Q

in the following way. The immediate successors are searched by line

9. If the successor is a module node, line 12 gets d+1 as the

distance of the successor. Otherwise, the same d is pushed onto Q.

The global variable lRX is modified whenever modified d exceeds it.

Lines 9 and 10 ensure that every node in the MSCC is to be

visited only once in evaluation of ML(i), consequently every edge in

the MCC is visited exactly once during this process.

Since every node can be put in Q only once, we can conclude that

the loop from lines 6 to 18 must terminate.

Now we prove the correctness of the algorithm by induction on the

distance value k. To do that we first consider the following

equivalence:

(1) p(Mi,Ms)-k <-) (Ms,d) has been in Q and d-k.

For k-0, we have exactly one node, such that p(Mi,Ms)-O, i.e.

Ms-Ni. For this node Mi, line 5 defines a pair (Mi,d) with d-0.

Conversely, suppose that there is a node Ms such that a pair (Msd) is

in the Q and d-0. Line 12 implies that any module node different than

1i in the 3SCC will have distance d at least by one greater than 0.

Thus s-Mi.

Now suppose that the equivalence holds for all k <n. Let us

consider a module node st, such that p(Mi, st )-n+l. There must be a

module predecessor s of st, such that p(i,s)-n and st must be new

when s is taken from Q. Thus under the inductive hypothesis, let

(st,dst) and (s,ds) be the elements in Q, dst-ds+l-n+l. Conversely,

if for some module node st, (st,dst) is an element in Q and dst-n+l,

then there must exist some module node s, such that s is the

predecessor of st, and (s,ds) is an element in Q, ds-dst-l-n-l-n.

Hence p(i,s)-n and finally p(i,st)-p(Mi,s)+l-nl. u

*q
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Furthermore, since line 13 conditionally modifies MAX whenever d

is modified, it is trivial to see that MAX records the diameter of

MSCC. 0

The complexity of the algorithm can be shown as the following.

lat N be the number of module nodes in MSCC, and E be the number of

edges. It takes O(N) steps to go through the outer loop from line 2

to line 19. The number of steps to compute line 6 to line 18 is E+N

because every node and every edge have to be visited precisely once.

For MSCC with N)l, obviously E )N, thus the total complexity for the

algorithm is O(N*E). 0

11.9 CODE GEIERATXON (PROCEDURE NAME: GCODE)

The code generated by the Configurator is dependent on the

available operating system. The current implementation uses VAX/VMS

operating system, version 3.6. The Configurator generates a set of

program in JCL and PL/I that initiate and execute the system.

The implementation of the system described in a CSL specification

consists of programs on three levels under VMS.

i) Main (or sub-main) JCL program level (one for each configuration

specification).

ii) Individual JCL program level (one for each module in a

0 configuration).

iii) Individual program level (one for each module).

A main (or sub-main) JCL program performs three tasks, namely

i) create necessary mailbox( es) by calling VMS mail server (3RUN

crembx),

ii) submit individual (or sub-min) JCL programs for execution

(SSUBMIT), and
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iii) at the end of submission of modules for execution, the JCL

program determines when all the modules executioass have been

completed. (This is done by using $SYNCHRONIZE commands.) This

is necessary in the case that the main JCL program corresponds to

a GRP type node, which possibly may have to be synchronized with

other modules.

The five types of commands in an individual JCL program are

arranged in the following way:

i) commands for synchronization (SSYNCHRONIZE)

ii) commands for assigning logical file names to the physical ones

( SDFINE)

0 iii) MSCC diameter definition (optional) (sDEFINE MAXD)

iv) command for activating a module (SRUN)

v) commands for disconnecting the logical file assignments

(3DEASSIGN)

A SUBMIT command in VMS puts a JCL program into a job queue. It

also gives an external name (JCL accessible) to the job in the queue.

VMS will then schedule the jobs in the job queue, according to the

delay commands in respective jobs, and execute them in a simulated

parallel fashion. A SYNCHRONIZE command is used to delay the

execution of a command until the completion of a specified job.

Commands DEFINE and DEASSIGN connect and disconnect the logical file

names respectively. When a RUN command is executed, the executable

code produced from the PL/I programs generated by the MODEL compiler

is located and executed.

The following graph shows the execution of a configuration

system.

0.

S
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Main JCL Individual JCL Individual Module

(MAIN.COM) (A.COM) (A.EXE)

'screate mai3bo2A- I synchronize I A
3submit A I 3Sdefine ... A

1Ssubmit B I I. . . I~ru~n A/ I
* • .•deassign ... I

gSsubuit SUB
Ssynchronize
3synchronize B , (B.COM)

:z : :0
1Ssynchronize SUBi I lSsynchronize .. B
I , ',$define .

1$run B
SUB-MAIN JCL (SUB.C M)
4- I 4I I

I $create mailbox
Isubmit X -- _ _ (X.cCOM)

s c e'$synchronize X
syncbronize X IMdefine ..

: : : : ',$run X
I o I *:

FIGURE 22. Execution of a Configuration System

The above figure shows the first two levels of a configuration system.

The first level main JCL is "MAIN. COM" which submits all its

constituents: A,B,... and SUB, which is a GRP node in the main

configuration representing a sub-main JCL on the second level. The

file "SU1 .COM" is generated by a separate run of the Configurator.

The "EXE" files are executable codes of all individual modules

generated some high-level language compiler.

This scheme can also be used to execute programs in a computer

network.

11.9.1 MAIN JCL PROGRAM GENERATION

The main JCL program is generated simply by scanning the modules

in the system.

Alaorit 9. Generating main JCL programs. (Procedure name: GCODE)

Input : List of modules in Gf
Output: The main JCL program
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1. Generate "compile", "link" and "run" commands for the
mailbox creation program.

2. Do the following for each member e in the list.
3. If TYP(e) # "+" & TYP(e) y "MAN"
4. then generate "$SUBMIT e /NAME=e "
5. End.
6. Do the following for each member e in the list.
7. If TYP(e) p' "+" & TYP(e) # "MAN"
a. then generate "$SYNCHRONIZE e ".
9. End. 0

The generation of the SYNCHRONIZE command is based on the
sequential relations. For example, if component C1 is a predecessor

of component C2 in Gc and if Ml E Cl and M2 E C2, then the JCL

programs for Ml and M2 are:

(Ml.com) (M2.com)
SRUN M1 3SYNCHRONIZE Ml

RUN M2

Lines 5-8 are designed to ensure proper synchronization sequence for

all GRP modules. It has the effect that every main (or sub-main) JCL
program will not finish until each and every submitted job finishes.

A GRP module represents a sub-configuration. It implies a

separate run of the Configurator which generates a sub-main JCL
program. At the time of a (relative) global configuration, the

details of the sub-configurations are invisible. For a module node

whose sequential predecessor is a GRP module, direct synchronization

with any modules in the GRP predecessor is impossible. Therefore that

module has to be synchronized with the JCL program of the GRP

predecessor node. Since every main (or sub-main) JCL program finishes
only after the completion of all the submitted jobs, proper

synchronization is thus achieved.

11.9.2 INDIVIDUAL JCL PROGRAM GENERATION

To achieve maximum concurrency, every individual JCL program
synchronizes only with its direct sequential predecessor modules (in

Gf).

*
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The following is the algorithms which produces individual JCL

programs.

10. Producing individual JCL programs.
(Procedure name: GOODE)

Input Gf
Output: individual JCL programs for each module

0. Do the following for each module e in Vf.
1. If TYP(e)"01"NM'
2. then do;
3. Create a JCL file for e (named 'e'.COM).
4. DO the following for every sequential predecessor module Mx
5. Generate "3SYNCHNIZE mx/NAME=ix"
6. End.
7. If TYP(e) y "GRP"
8. then do;
9. Generate "$DEFINE logical file name"
10. If the XSCC containing e has diameter >0
11. then generate "$DEFINE MAC_D diameter".
12. Generate "SRUN" and "$DEASSIGN" commands for e
13. End.
14. Else do;
15. Generate "$SUBMIT Se/NAME=Se".
16. Generate "$SYNCHRONIzE Se".
.17. End.
19. Close 'e'.COM.
19. End.
20.End. 0

Where "Se" in the algorithm is the name of "e" prefixed by an

Note that although there may be a chain of "=," relations, the

synchronization among two modules can be achieved by synchronizing

only the closest predecessor(s). For example, if Kil,Mi2 = Nj =) W,

then Mk has only to be synchronized by Mj and Mj has to be

synchronized by Mil and Mi2.

A module node of type GRP has a special JCL program generated

which contains:

a) synchronization command( s),

b) a submit command for submitting a JCL program named Se (generated

by a separate run of the Configurator for a sub-configuration), and

c) a synchronization command for synchronizing the termination of the

JCL program with the termination of Se.

Since Se has its own termination synchronization with the modules
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in the sub-configuration, a hierarchical execution pattern is then

achieved.

The convention of naming CSL specifications for

sub-configurations is that every sub-configuration must have a nam

with a leading character "S" and its representative GRP node (in the

relative main configuration) must have the name without the leading

The complexity of this algorithm is O(Nm), where Nm is the number

of modules in a configuration.

11.9.3 PL/I PROGRAM GEIERATION

A mailbox-creation PL/I program is generated by scanning all the

NIL files in the system. The existence of a mailbox file is

indicated by a MAIL file node used as the source of some module node.

The following algorithm traces only the source MRL files and

generates the mailbox file creation PWI program.

&11. Mailbox creation. (Procedure name: GCODE)

Input : Gf, list of files in Gf
Output: A PL/I program which creates all the necessary mailbox( es)

1. Set fst-°l'b.
2. Do the following for every element e in the file list.
3. If TYP(e)-MAIL and successor(e) is a module node
4. then do;
5. I f fst

then create heading of a PL/I program and declaration part.
6. Set fst='O';
7. Generate mailbox creation PL/I statements for e.
8. End.
9. End.
lO.If fst='O'b then generate the closing part of the PL/I program. 0

The use of the variable fst is to prevent the generation of empty

mailbox creation programs when there is no source NAIL file in the

system. The proof of the correctness of this algorithm is immediate

and omitted here.

. .. ., ". . • . -o . .",S
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The mailbox deletion program is generated in the same way as for

the creation program except that the - VMS utility used is not for

creation but deletion.

The complexity of this algorithm is O(Nf), where Nf stands for

the nmber of FILE nodes in the system.

11. 10 CONFIGURATION DOCUMENTATION (PROCEDURE NAME: GRPT)

As mentioned before, there are seven reports generated by the

Configurator to aid the user in developing and debugging.

The CSL listing report is generated by procedure LEC.PLI during

lexical analysis.

The cross reference report is generated by a procedure XREF.PLI

by listing the two symbol tables alphabetically.

All the other reports are generated by a procedure GRPT.PLI.

The MSCC report is generated printing all the elements in Vc

connected by the edges in Gf. This report can be used to identify

possible circular form inconsistency.

The extended component graph Ge and configuration graph Gf are

printed in adjacency matrix form based on Gf and Ge respectively.

The report of module-file cross reference is produced by listing

all successors of any node in Gf.

The listing of JCL and PL/I program is generated only if

configuration programs are desired. The user may suppress the

generation of the programs and use the Configurator only for checking

a system design.

The error and warning message report reports the syntax and

semantic errors as well as the errors detected during completeness and

consistency analysis.

. . . . . . o . . . - , . ,. - -
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All the error/warning messages produced by the Configurator are

listed in Appendix 4C.
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CHAPTER 12

OBJECTIVES OF THE MODIFICATIONS

The major objective of the modification to the MODEL compiler is

to enable each module to operate concurrently with other modules in an

overall configuration. As explained in Part I, an overall MODEL

specification may be partitioned into a number of of modules. A

specification of a module consists of only variable declarations and

equations. Variables in each module are also declared whether they

are SOURCE or TARGET - meaning that they are in files which are

external to the modules. The module then interacts with its external

files. Alternatively files may be internal to the module. To have

variables shared by modules, it is necessary that the variables be

declared external to these modules. The implementation of the overall

specification is carried out on two levels. The Configurator -

described in Part II, implements the connection of modules and files

to form a network. The modified MODEL compiler - discussed in this

part - generates a program for computing an individual module which
communicates with other modules. The old MODEL compiler documented in
(Lu, 81] was developed for implementing a specification by a single

sequential program without communication with other modules. Namely,

the operations necessary for concurrent programming were not supported

in the old MODEL compiler. The contribution of the research described

in this part is to incorporate modularity and communication into the

MODEL language. It can be divided into four areas as follows.

External dependencies - In composing a specification of a module,

the specifier may want to have other modules provide a function which,

- 127 -
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given values of certain arguments, returns values of some variables.

To provide the arguments, the specifier must declare them to be

members of record(s) of TARGET files. To refer to the result values,
the specifier must declare then to be members of records of SOURCE

files. It is required to declare the dependency of the result

variables or the argument variable. The specifier needs not declare

or ever know the names of the other modules which provide the

function, or the definition of the function. This is referred to inV the following as extenal del2d and its implementation is

described in Chapter 14.

MIL and POST files - External files may be assumed to reside on

respective devices. Such files are declared as having a sequential

(SAM) or indexed sequential (ISAM) organization. However, files which

connect modules need not have to reside as a whole on a device but may

be communicated piecewise between the concurrently computing producer

and consumer modules. Such files must be declared by the specifier as

having a MIhL or POST organization. )RIL and POST files are similar

in function to the mailbox and post office of a postal system,

respectively. The modification to the MODEL compiler to support usage

of MIL and POST files are described in chapter 15.

Concurrent update of ISAN files - ISAM files may also be used for

connecting modules. In this case, the modules connected may be both

producers and consumers of the file, concurrently. It is necessary

therefore to provide a locking mechanism to protect the shared data,

so that the connected modules do not interfere with each other. If

the updating is only of a single record at a time (in the generated

program), the locking mechanism is provided through the facilities of

the VMS operating system. Otherwise, the user is warned to include

the locking algorithm that allows exclusive access to the ISAM file in

the module's specification. This is described in Chapter 16.

Inter-module simultaneous equations - When there is in the

overall specification a set of n simultaneous equations with n

unknowns which span more than one module, then all the respective
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module programs must cooperate in the solution of these equations. In

the old MODEL compiler, the Gauss-Seidel method is used when a set of

simultaneous equations is confined to one module [Greenberg, 81. The

old MODEL compiler is extended for the multi-module cases. The

solution of the equations in each module continues to use the

Gauss-Seidel method. However, the results are communicated

iteratively to the other effected modules. A Jacobi-like method is

used for inter-module iterative solution. Iterations of

communications and solutions continue until overall convergence

conditions are attained. This extension is described in chapter 17.

The following figure shows the procedures in the MODEL compiler

and their communications. As shown, the system consists of five

phases: syntax analysis, array graph analysis, range and data type

propagation, scheduling and code generation. The modified or added

modules are marked with asterisks.

The description of the modifications to the MODEL compiler in the

following chapters follow the order of the phases in the MODEL

compiler. The reader who desires further detail may refer to

respective chapters in (Lu, 81] for additional information. The

description of each modification starts with a brief description of

its objective or function, followed by description of methods,

algorithms and data structures used in the phases as appropriate.

.* . • . . ,o .'" • , ." _ " . _ , - • • . . . .L _ " ,



-130-

IxI

Ai

-c z

z r 2

A ~ i

Q.. 4j&C.,

Ig



I. - . . - , . .= 4 .' - . - -" • "- -"".

~~.]

CHAPTER 13

EXTERNAL DEPENDENCY

13.1 FUNCTION OF EXTERNAL DEPENDENCY

In specifying a module, the user may utilize services of other

modules to perform a certain function. The specified module must

contain the arguments of the function in records of target files and

the return results in records in source files. Additionally, to

denote that there is a causal connectivity between the arguments and

the results, the user must also provide an equation stating the

dependency of the latter on the former. This is referred to as

external d statement.

An external dependency consists of a pseudo function called

DEPENDSON. It represents a dependent relationship among its

left-hand-side target record(s) and right-hand-side source record(s).

The following is an example illustrating the syntax and semantics

of the external dependency:

MODULE: Ml; MODULE: M2;
SOURCE: MP; SOURCE: NF;
TARGET: NF; TARGET.. MP,
1 MF FILE ORG: MAIL, 1 NF FILE ORG: MAIL,
2 MW3 *) RECORD, 2 NR(-) RECORD,

3 4 FLD (PIC '9999'); 3 M FLD (PIC '9999');

1 NF FILE ORG: MAIL, 1 MV FILE ORG: MAIL,
2 Mt(') RECORD, 2 MR(*) RECORD,

3 N 7L (PIC '9999'); 3 M PL (PIC '9999');
I SUBSCRIPT; I SUBSCRIPT;
M(I) - M(I)+I; M(I) -,IF 1-i THEN I
MR(I) - DEPENDSON(NR( I-i)); ELSE N(I-1)+;

NR( I) DEPENDS_ON(N( I ));
(END.MR(I),END.R(I))n11000; (END.NR(I),END.MR(I))I=iOO0;

- 131 -
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11 and M2 constitute a concurrent system, connected through files

W and NF. NR and MR are two records in modules Ml and M2

respectively. The vector of records MR consists of all the odd

numbers from 1 to 1999 and NR of all the even numbers up to 2000.

In module M2, M(I) is defined as being 1 for I-1 and as N(I)+l

for other values of I. Similarly in MI, N(I) is defined as being

M(I)+l. The specifier of K1 has to state the external dependency

among variables M and N, which is provided externally, i.e. by module

M2. Similarly, the specifier of M2 has to state the external

dependency among variables N and M, which is provided externally, i.e.

by module M1.

4 13.2 SYNTAX ANALYSIS

DEPENDS_ON is a pseudo function with variable argument list. It

is treated as an ordinary equation with LHS as the dependent variable

and RHS as the independent variable( s). Thus there is no change to

the syntax analysis phase.

13.3 ARRAY GRAPH ANALYSIS (PRECEDENCE ANALYSIS)

In building the symbol dictionary, a procedure INITIAL is called

to check the attributes of each symbol. If a symbol is a built-in

function, appropriate mark is made in the dictionary. Since the

DEPENDS.ON statement is treated as a built-in function, it is placed

in the 43rd position in the array FCNAMES by program INITIAL. The

other functions are either MODEL built-in functions or PL/I built-in

functions.

No change is made in array graph construction.

13.4 RANGE AND DATA TYPE PROPAGATION

The data type check routine CHECKER, which checks for number of

arguments of a function, by-passes the DEPENDSON function. This

I' .
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enables the DEPENDS_ON function to have arbitrary number of arguments

with arbitrary data type. Because the data nodes of a DEPENDSON

function must all be RECORD nodes, there should be no data types

assigned.

13.5 CODE GENERATION

There is no changes in the scheduling phase.

No PL/I code is generated for the statements with DEPENDS ON

function. In routine GENASSR (called from CODEGEN), whose function is

to convert a given MODEL equation into a PL/I statement, a conditional

RETURN statement is added. It tests the existence of "DEPENDSON" and

returns back to CODEGEN if "DEPENDSON" is found in the text.
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CPrER 14

THE MAIL AND POST FILES

14.1 FUNCTION

Two new file organizations, MAIL and POST, are added to the

previous MODEL language file organizations: SAM and ISAM. The user

continues to view the external environment purely in terms of data.

However, if the data connects the module to other modules and does not

need to be stored as a whole then it is declared as having MAIL

organizatin. Otherwise it is declared as a SAM. file. The records

are queued (making up a multiple dimension array) in a MAIL file in

the order of arrival. The MAIL file thus serves the function similar

to a mailbox. The POST file organization is used if a record contains

an address of the destination mail file. Thus it is similar to the

way post offices distributing messages to mailboxes. A POST file is

thus connected to multiple MAIL files. There can be multiple

producers and consumers of data of a MAIL file, however, there can be

only a single producer of data of a POST file.

14.2 SYNTAX ANALYSIS

The augmented BNF of the FILE declaration in MODEL is as the

follows.

cFILEDCL> :. 1 <NAME> IS FILE C, ORG: <ORG>] (,KEY cNAME>]
<ORG> :: SAN I ISAM I MAIL 1 POST

FIGURE 24. Syntax of a file declaration in MODEL

- 134 -
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SAM and ISAM are the two existing file organizations in the old

MODEL language. The KEY option is only used in a) a POST file to

indicate the field in a record that contains the destinations of the

records; or b) an ISAM file to indicate the field according to which

a record is accessible.

The syntax analysis program stores in a dictionary the attributes

of each symbol. This is done by the semantic routines during syntax

analysis. The data structure of the dictionary is named ATTRIBUTES

having the following fields.

DCL 1 ATTRIBUTES BASED (ATTRPTR),
2 XDICT CHAR( 32),
2 XDICTYPE CHAR(4),
2 XNAINASS PTR,

2 XRECIO bit(1), /* recio or stream io */
2 XINXPOS FIXED BIN; /* INDIRECT VECTOR POSITION */

XDICT contains the name of the entry in the dictionary. The

field XDICTYPE indicates the type of the entry in the dictionary; it

may be one of the following:

i) FILE - a FILE node
ii) FLD - a FIELD node
iii) RECD - a RECORD node
iv) ASTX - an ASSERTION node

If XDICTYPE is FILE, the pointer field XMAINASS points to an

auxiliary data structure named FILE.

DCL 1 FILE BASED(DP), /* DATA STRUCTURE FOR FILE DCL */
2 TYPE CHAR(4), /* -'FILE' V/
2 STMTS FIXED BIN,
2 $3IEKBERS FIXED BIN,
2 TABULATED FIXED BIN, /* O- NOTAB, 1= TAB */

0 2 DUWQY FIXED BIN,
2 KEY_FLAG FIXED BIN, /* O NOKEY, 1- KEYED*/
2 ISAMB FIXED BIN, /* 0-SAM,l-ISAM,2=MAIL,3=POST '/
2 MEMBERS(N),

3 SSUB FIXED BIN,
3 FIRSTSUB FIXED BIN,
3 SECONDSUB FIXED BIN;

- - -. -
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The field ISAMB in the FILE structure contains the code of file

organization. The coding process is done by a semantic routine named

SVORG3 during the syntax analysis.

SVORG3: ENTRY;
/* SAVE FILE ORGANIZATION INTO ASSOCIATED DATA AREA '/

IF LECBUFF-'ISAM' THEN FILE.ISAMB-l;
ELSE IF LEX3UFF='MAL' THEN FILE.ISAMB-2;
ELSE IF LtXBUFF-IPOST, THEN FILE.ISANB-3;

RETURN;

Where LECBUFF contains the symbol recognized by a lexical

analyzer. Fully expanded EBNF description of the concurrent MODEL

language can be found in Appendix B.

14.3 CODE GENERATION

There is no changes in the array graph analysis, propagation and

scheduling phases. Some knowledge of VMS PL/I is required in this

section (VAX, 80].

The code generation phase (CODEGEN) consists of searching the

entries in the flowchart produced by the scheduler (SCHEDULE), one by

one, and interpreting them into PL/I code. Source file entries are

transformed into OPEN operations; target file entries into CLOSE

operations; source records into READ operations and target records

into WRITE operations. The transformation process varies according to

two attributes of the node: file organization and target/source.

Detailed description of the translation process is presented in the

next four sections.

14.3.1 THE OPEN PROCESS

As shown above, the ISAMB field in data structure FILE indicates

the file organization of a given symbol. The following table depicts

the interpretation of the MODEL compiler to the different file

organizations.

*t
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Let "name" be the name of the file with type ISAMB in the table.

ISAB ORG. S/T DESCRIPTION OF PL/I CODE

0 SAM S Simple OPEN statement. Option: INPUT, SEQUENTIAL.

0 SAM T OPEN process is omitted.

1 ISAM S OPEN with read_.only options-
INPUT, SEQUENTIAL, ENV( SHARED_WRiTE).

1 ISAM T OPEN with update options:
KEYED, SEQUENTIAL, UPDATE, ENV(SHAREDWRITE).

2 MAIL S i) Create a mailbox named "name"S_MBX using VMS
utility SYS$CREMBX.

ii) obtain the physical name bound to the logical
file name: "name" by using the VMS utility
SYSSTRNLOG.

iii) OPEN the file with obtained physical name.

2 MAIL T No need of an OPEN process. The file is open to write
by default.

3 POST T No need of an OPEN process. The file represents only
intermediate distribution.

TABLE 6. Interpretations of a Source File node (OPEN)

REMARKS ON MAIL FILE:

The mailbox creation statements in the OPEN process are designed

to "compensate" the mailbox creation process done by the Configurator.

In general, a physical mailbox is created for each source mail file by

the main JCL program generated by the Configurator. The mailbox is

deleted when the module that uses the mailbox as source terminates.

However, a module may also be initiated manually and repeatedly. In

such cases, the mailbox deleted in the previous run has to be

re-created when a module is re-initiated. The mailbox creation

statements in the OPEN process can re-create the mailbox if it is

deleted in previous run. If the mailbox exists before the execution

of the module, the mailbox creation statements in the module become

redundant. This may happen, normally, only when a +"" module is

initiated. In VMS, however, a redundant mailbox creation request is

returned immediately instead of creating a new version of mailbox.

The 1+" module can still get access to the existing mailbox which may
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contain some messages sent by other modules before its execution.

Thus the correctness of the implementation is guaranteed.

The logical name translation process is to obtain the physical

file name assigned at runtime. If a source MAIL file is assigned to a
disk file at runtime, the computation proceeds by consuming the disk

file, as if a mailbox file were used. This facilitates local

debugging for individual modules by avoiding modification and

re-compilation of the individual MODEL programs.

14.3.2 THE CLOSE PROCESS

The following table depicts the CLOSE process for a file node.

Let "name" be the name of the file with type ISAMB in the table.

ISAMB ORG. S/T DESCRIPTION OF PL/I CODE

0 SAN S CLOSE process is omitted.

0 SAN T Simple CLOSE statement.

1 ISAM S CLOSE process is omitted.

1 ISAM T Simple CLOSE statement.

2 MAIL S Deletion of the mailbox created in the OPEN process
using the VMS utility SYSSDELMBX.

2 MAIL T No need of a CLOSE process.

3 POST T No need of a CLOSE process.

TABLE 7. Interpretations of a Target File Node (CLOSE)

In general, the CLOSE process is performed only for the target

files in a module; but in the case of a qource MMIL file, a special

mailbox deletion process is also necessary.

14.3.3 THE READ PROCESS

The READ process is the interpretation of a source RECORD entry

in a schedule. The interpretation varies based on the organizations

of the file to which the record belongs.

*
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The following table depicts the interpretations according to the

file organizations and their input/output status.

ISA14 ORG. S/T DESCRIPTION OF PL/I CODE

0 SAM S Simple READ statement.

1 ISAM S Indexed READ statement.

2 MAIL S Simple READ statement.*

TABLE S. InterpretationS of a Source Record Node(READ)

*MOTE: The MIL file has the same READ process as for a SAN file;

this is to allow device independence.

Although having the same form as for a sequential file, a READ

operation will "wait" if it is issued to read a mailbox and there is

not data in the mailbox.

* 14.3.4 TH WRITE PROCESS

The WRITE process is only for target and update files. Let

"name" be the name of the file with types depicted in the following

table. iI
ISAMB ORG. S/T DESCRIPTION OF PL/I CODE

0 SAM T Simple WRITE statement.

1 ISAM T Keyed WRITE statement.

1 ISAM S&T Keyed REWRITE statement.

2 MAIL T i) Obtain physical file name from the logical name
ii) Assign comwunication channel to the physical name
a) If channel assignment is successful, then

WRITE the message to the physical mailbox using
VMS utility SYS3QIO

b) If no channel can be assigned, WRITE the message
into a disk file named "name".DAT

iii) Deassign the channel.

3 POST T i) Assign channel to the file name contained in
the address field of the POST file;
a) If a channel is assigned successfully, then

WRITE message using the VMS utility SYS$QIO;
b) Otherwise WRITE message into a disk file

named "name".DAT.
ii) Deassign the channel.

TABLE 9. Interpretations of a Target Record Node(WRITE)

*
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RJ3KS ON MAIL FILE:

The runtime physical file name obtained at step (i) can be either

a mailbox name or a disk file name depending on the logical name

assignment in JCL before execution. If a disk file name is found, the

WRITE process simply writes the record to the disk file. Otherwise

the VMS utility routine SYSSQIO is used to send record to the

designated mailbox. For each WRITE action, the channel assignment and

deassignment are respectively executed once; this is to allow

efficient use of communication channels available on a particular host

computer.

RE4ARKS IN POST FILE:

Instead of using the logical file name: "name" to acquire

communication channel, as done for a MAIL file, the POST-file WRITE

process acquires channel to the address field in the POST file. This

realizes the effects of runtime distribution of records to different

destinations.

14.3.5 ON ENDFILE

Using the concurrent programnming facilities of VMS-PWI, the

exception handling must be considered. The exceptions are signaled in

different ON-units and one can use the exception codes for appropriate

action.

A module consuming MIL file( s) is designed to disregard all the

DIDFILE marks it may receive from the mail producers. Because every

producer executes a CLOSE statement when it finishes local

computation. The effect of executing a CLOSE statement is to put an

DIDFILE mark into the mailbox, such that the receiving module can be

informed of the termination of a producer module. These marks are not

used in the current implementation.

6 " .- ' . .-. .' , ". - ..- " .' - ' -"
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i - An ON ENDFILE unit is used to recover from reading an ENDPILE

mark. Before each READ statement for a MIIL file, there are a label

statement and a label assignment statement, shown as follows.

3RDL"recname"-
3RD_L-3RD_L" recname";
READ FILE( "name" )...

In the ON ENDFILE("name") clause, we have the following:

ON ENDFILE( "name") BEGIN;
GOTO 3RD_L;

END;

Where "name" is the name of the MAIL file and "recname" is the
record name in the file. When an ENDFILE condition is signaled, the

control of the program is transferred to the ON-ENDPILE unit. The

GOTO statement forces the control back to the original READ statement

which triggered the ON unit. Since one source MAIL file may contain

more than one RECORD structure which will be interpreted as more than

one READ statement, there may be more than one READ statement that may

signal an ENDFILE condition. The use of the label variable 3RD_L and

the label assignments ensures the proper trace of the READ statements.

4

4

- • - ... .• .

• . ',- .. .. . . . . = . : _ • i . .



CHAPTER 15

CONCURRNT UPDATE O ISAM PILES

15.1 PROBLEMS AND OBJECTIVES

Sharing ISAM file concurrently requires the use of record locking

mechanism. The VMS-PL/I compiler offers the following automatic

record locking facilities.

A record is locked when both of the following are true:

* A READ statement is issued for the record.
* The file containing the record was opened with the OU7TPUT or UPDATE
attribute.

A record remains locked until one of the following occurs:

* The locked record is rewritten or deleted.
A READ, WRITE, REWRITE, or DELETE statement is executed to access
another record in the same file.

* The REWIND built-in subroutine is called to rewind the file to its
beginning.

*The file is closed.

Records are also locked for the duration of a WRITE, REWRITE, or

DELETE statement to ensure that the I/O completes. The records are

unlocked when these statements complete.

If a module attempts to access a locked record, an ERROR

condition will be signaled. The condition can be sensed in an ON

ERROR unit (similar to an ON ENDFILE unit).

In majority cases, an ISAM file is accessed one record at a time.

The above facilities are sufficient to provide protection to the

shared data in such cases. However, in more complex applications, a

- 142 -

:S:i



- 143 -

module may want to lock several records in order to update them

correctly, meanwhile allowing other modules to access other records in

the same file. This kind of application will be called here

"multi-record access". Since the available facilities at hand

(VAX/11-PL/I and VMS) do not have the multi-record locking ability,

the MODEL compiler detects whether a multi-record access is implied by

the specification, it issues a warning to the user confirming that

mutual exclusion will not be provided automatically.

The MODEL compiler is modified to attempt to schedule the READ

and WRITE or REWRITE processes of an update ISAM file inside one loop.

This ensures that if possible, a user's specification will be

scheduled into one-record access.

15.2 SCHEDULING

There is no changes in the stages before scheduling.

In scheduling stage, a modification is made to force the merge of

a READ and a WRITE operation of an update ISAM file into one loop for

mutual exclusion in updating shared records.

To illustrate the idea, let us consider the following example.

If X is an update ISAM file, a MODEL specification which manipulates

the file may produce the following different flowcharts:

a) Do loop 1; b) Do loop 1;

READ FILE(X); READ FILE(X);

End; REWRITE( or WRITE) FILE( X);

Do loop 2; End;

REWRITE( or WRITE) FILE( X);

End;

If the module is running concurrently with other modules,

schedule (b) is more desirable due to its implicit use of VMS-PL/I one

record locking facilities (see section 15.1).

-- -•- - .
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In principle, the possibility of merging two loops together is

decided by the use of subscripts in a MODEL specification and an

optimization algorithm. The optimization algorithm first determines

all the possible mergers of components in the array graph and then

calls a function EVALUATE to compute the memory penalty of each

merger. The merger with smallest penalty will be chosen and produced

in the flowchart. To force the merger of a READ and a REWRITE or

WRITE operations (RW-merger), the function EVALUATE is modified. The

modified EVALUATE first checks the existence of a READ and a

REWRITE(or WRITE) of an update ISAM file. If found, the function

returns (- 10,000,000 + real penalty). Here 10,000,000 is assumed to

be the maximum memory penalty for a merger. This will force a

RW-merger with smallest memory penalty to be chosen, i.e. if more

than one RW-merger have been found, the one with smallest penalty will

be chosen.

After scheduling, a flowchart of the MODEL specification is

constructed. In procedure "PREPARE" (in Figure 23), the check of

multi-record accesses on ISAM files is performed. It is done by

scanning the flowchart looking for consecutive READ (X) statements

(without REWRITE or WRITE in between), where X is a update ISAM file.

m A warning message will be issued, if such READs have been found.

15.3 CODE GENERATION

When a module attempts to access a blocked record (i.e. being

updated by another module) then an error condition is created. The

objective of the following generated code is to recover from the error

and attempt another access later.

i) Before each READ, WRITE, REWRITE, and DELETE statement, there are

a label statement and a label assignment statement. The labels

before different statements are named differently. This is to

keep track of a statement which signals the condition. The

following figure shows a sketch of the produced code.
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t,"name"•
SRDLP3=L3"name";
READ FILE("name") INTO( ... ) KEY( ...

3RW_"name":
3RDLP3=3RW_ name";
REWRITE FILE("name") FROM( ... ) KEY( ... );

W$_"name" -
3RDLPS=W3_"name" ;
WRITE FILE( "name") FROM(...) KEYFROM(...);

D$_"name":
$RDLP3=D$_"name" ;
DELETE FILE("name") KEY(...);

FIGURE 25. PL/I code for concurrent ISAM file accessing

ii) In the generated ON ERROR unit, a goto statement is added (in

procedure CODEGEN)

JN ERROR BEGIN;
IF ONCODE( )=RmSRLK THEN GOTO sRDJLP$;

END;

FIGURE 26. The ON-UNIT for concurrent ISAM file accessing

The RMS$_RLK is the condition signaled by the access to the

locked record; it stands for "Record Management System_Record LocK".

! p
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CHAPTER 16

ITERATIVE SOLUTION FOR DISTRIBUTED SIMULTANEOUS EQUATIONS

16.1 PROBLES AND OBJECTIVES

DSE (Distributed Simultaneous Equations) is a system of

simultaneous equations which span more than one module. For the

system is to be solved iteratively, it should terminate an iteration

only if all of its modules are converged (or have run out of iteration

limit). Otherwise incomprehensible results may be produced.

The objective of the modification to the MODEL compiler is to

design an algorithm that can be attached to the produced PL/I program

and can simultaneously control the termination of each iteration of

every module.

The problem is equivalent to the well know "distributed

termination problem" studied in (Dijkstra, 83] and (Francez, 82].

Formally, it can be stated as follows. Given an arbitrary distributed

system consisting of N modules that are strongly connected and run in

parallel, the system termination condition ist

B = Bl & B2 &B3& ... &BN.

Bi> is called the "stable" or "termination" condition for module

Mi. The objective is to terminate the system as soon as all Bi)-s are

satisfied. For a DES system, since all the modules are computing

synchronically, the stable condition of each module may be indexed by

the iteration number t. Consequently, the termination control problem

can be stated as to find the smallest t, such that

- 146 -
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B(t) = Bl(t) & B2(t) & B3(t) & ... & BN(t)

becomes true and to terminate an iteration of all the modules at

exactly the same t.

16.2 SOLUTION TO DISTRIBUTED TERMINATION PROBLEM

To control the termination of a distributed system, a termination

control algorithm must be bound to each individual module; but in no

case should the original computation of each module be altered.

16.2.1 COMPARISON WITH THE KNOWN SOLUTIONS

There are two important differences between our solution and the

ones studied in (Dijkstra, 83] and (Francez, 82].

i) Network connection.

In (Francez, 82], an undirected spanning tree is chosen in

connecting a distributed system. In (Dijkstra, 83], an undirected

star-like network structure is used. In our solution, however,

the network connection can be a SCDG (Strongly Connected Directed

Graph). Both spanning trees and the star-like networks are

special cases of SCDG if the undirected edges are treated as pairs

of directed edges.

ii) Synetric treatment of modules

The requirement of knowing the "root" of the connection tree

or the "center" of a star structure is dropped to allow every

module to be equally treated and the solution to be symmetric.

Consequently, the same control algorithm is applicable to every

node (module) in the SCDG.

16.2.2 ASSUMPTIONS OF THE TERMINATION CONTROL ALGORITHM

Following are the assumptions of the termination control

algorithm.

i) All the modules participate in a SCDG.
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ii) Every module Mi will eventually satisfy its corresponding <Bi>,

and once the <Bi> of a given module and all its predecessors' are

satisfied, that module will keep its <Bi> satisfied.

iii) There is only one format for control messages; i.e., the control

ro format of a module's output must be its successors' input control

message format.

iv) The maximum diameter (D) of the SCDG is known in advance.

Assumption (iv) may not be necessary if greater communication

overhead can be tolerated to some extent (see section 16.2.4).

16.2.3 THE TEP1MINATION ALGORITHM AND ITS DERIVATION

In the sequel we use standard terminology of graph theory (Aho,

74]. By the distance L(x,y) from node x to y, we mean the length of

the shortest (directed) path between them. The network diameter (i.e.

the greatest distance between any two nodes) is denoted by D.

The termination detection algorithm involves sending tokens

through the network. Tokens have integer values from the interval

<O,D+l>. They are transmitted as a part of communication traffic

generated by the main computation. Thus, in the case of distributed

solution of simultaneous equations each message sent between processes

consists of a solution of local equations and a token representing the

state of a node.

Each process can count the number of times it has received

messages from all of its predecessors. We will use this value as a

local index of node's local activities, i.e. reading input,

performing computation and sending output. It is worthwhile to note

that in the considered case the main computation is partially

synchronized, because no process can complete receiving its t+l-st

input messages before all the processes have received their t-th input

messages. It also means that in order to synchronize deactivation of

processes, each one of them has to stop with the same value of the

* Si
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local index.

Let T(t,x) denote a predicate indicating whether the local

termination conditions are satisfied in node x for local index i. We

assume that initially T is false, i.e. for any node x, T(O,x)=F.

By I(t,x) we will denote the minimum value of tokens received by

the node x in the input indexed by t. Let S(t,x) denotes the t-th

state of the node x defined as:

0 - if T(t,x)=F
S(t,x)=

min(S(t-,x)7+1,I(t,x)) - otherwise

The state is well defined because for t=O T(O,x)=F and therefore

S(O,x)=O. The output token of node x sent out with index t is equal

to S(t,x)+l. (This token is received by successors of node x as a

part of their t+l-st input).

Informally speaking a node x is a generator of new "0" tokens

when T(t,x)=F (i.e. it is not ready to stop) and it is a transmitter

of tokens otherwise. In the latter case the node selects the minimum

token among its actual input and previous output, and then increases

it by one and sends it further to the network. When all the nodes are

ready to stop, all are transmitters and no new "0" tokens are

generated. Therefore the transmitted tokens grow in value, as do the

node states. We show below that the network diameter is a limit value

0 which a node state can exceed only after all the nodes are ready to

stop. All nodes reach that state with the same local index.

To show this more formally, we notice first that the definition

of the node's state implies that

S(t,x)cS(t-l,x)+lit for any node x and index t>O.

As usual, the system state will be captured by an invariant, for

instance Q, defined as:

0I



- 150 -

Q: For any index t and node x if S(t,x),O then

(Vy:L(y, x) S( t,x),Vj :t-S(t, x) 9_t-L(y, x) ) :: S(j,y)>O

or in other words, for any node y and any index j if

t-S(t,x)cj (t-L(y,x) then the node y is ready to stop for the index j,

i.e. T(j,y)=T. The condition S(j,y)>O to be well-defined requires

jjO, but this follows from inequality t_S(t,x) holding for any node x

and index t>O.

Now, we show that the traffic of the tokens described above keeps

Q true. Q is true for index t=o, because for any node x, S(O,x)=O, by

definition. Suppose that Q does not hold for a node x. Let iOO

denote the smallest index of such event, and yo denotes a node

violating Q. Thus, we have

(jj:iO-S(tO,x)<jci]tO-L(yO,x)) :: S(j,yO)--0.

Let jO denote such j. Since Q holds for tO-i, we have

(Vj:tO-S(tO-l,x)-lcjitO-L(yO,x)-l) ::. S(j,yO)))>O.

Since S(t,x) cS(t-l,x)+l for any index t>O and node x, then jO may be

only equal to tO-L(yO,x), and traversing the shortest path from yO to

x we can start with the index tO-L( yO, x) and the state

S(tO-L(yO,x),yO)=O, to reach x with the input indexed by tO and such

that I(tO,x)_iL(yO,x). But the definition of the node's state implies

that S(tO,x).iI(tO,x), what contradicts the assumption that

S(tO,x) >L(yO,x). The contradiction proves that Q is indeed an

invariant.

If for any node x and index t, S(t,x))D then from Q we conclude

* that for any node y the inequality S(t-D,y)>O holds (since L(y,x)_iD)

and the entire computation is in a stable state.
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Now we have to show only that if for some index t, and node x,

S(t,x),D then for any node y also S(t,y)>D, i.e. that the stable

state of computation is recognized in all the nodes synchronically.

This is implied by another invariant R, defined as:

R: For any node x and any index t there is such a node y that

S(t-S(t,x),y)=O.

If S(t,x)=O then R holds by setting y=x. When S(t,x)>O we can

always construct a sequence of nodes y(O)=x, y(I)..y(k), k=S(t,x) such

that for 1=1,2.. .k.

S( t-ly(1))=S( t-l+l, y( 1-))-

To do that, let's consider evaluation of S(t-l+l,y(I-1)). If

S( t-1+l, y( 1-1) )=S( t-l, y( 1-1 )+l then we set y( 1 )=y( 1-1). Otherwise as

the element y( 1) we select the node which sends the token with the

minimum value for the t-l+1-st input of the node y( 1-1). The last

node in the constructed sequence, i.e. y(S(t,x)), satisfies the

condition of the invariant R.

If some nodes x,y and index t satisfies the conditions S(t,x)>D

and S(t,y)_iD, then from R we conclude that there exists such a node z

that S(t-S(t,y),z)=O. But from Q, based on S(t,x)>D, we have that

S(t-k,v)>O for any node v, and any k<L(v,x)_iD. The contradiction

proves that all the nodes of the network reach the state D+I with the

same local index. Therefore reaching this state can serve as a

trigger for deactivation of the corresponding process. It is easy to

verify that in fact we can use any value greater than D as a trigger

for deactivation, paying price however of continuing the main

computation unnecessarily. D+1 is in fact the smallest trigger value

independent of the pattern of getting nodes ready to stop.

Finally, we can give the termination algorithm as follows.

4
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&LQEL ] 12. DISTRIBUTED TERMINATION CONTROL.

Let D be the diameter
(Ti) be the set of input tokens of 1i and Oi is the output

token of Mi, and
PRE Oi be the value of the previous (t-l) output token Oi.

Initialization: PRE_0i-1.

0. If <Bi)
1. then if PREOi c MIN( (Ti)
2. then Oi = PRE Oi + 1.
3. else Oi = MIN((Ti)) + 1,
4. else Oi=O.
5. If PREOi > D +1 then stop.
6. PREOi = Oi. 0

The implementation of the algorithm is described in section 16.3.

16.2.4 FINDING THE DIAMETER OF THE NE'loRK DYNAMICALLY

Lack of knowledge of full network topology at compilation time

implies that the network diameter may be unknown until run-time.

Although the current implementation uses the Confiqurator to calculate

the diameter, this section provides a simple algorithm which may

reside in each module and compute the diameter at runtime without

using a centralized configuration.

0] For the given network we denote the number of its node by n and

its connectivity matrix by M. Let M1 denote a (n x n) matrix with all

the entries equal to 1. The network diameter is the smallest exponent

D such that M to power D yields MI. Each node in the network

initially knows only its predecessors, i.e. one row of the matrix M.

To minimize the communication traffic we want to propagate the

smallest possible amount of data. Thus, instead of attempting to

build up entire matrices of powers 1,2.. .D of M, in each node we will

construct only a single vector representing in a step k a row of the

k-th power of H. We denote the elements of the connectivity matrix H

by m(x,y) x-=1,2 ... n, y=1,2 ... ,n, where m(x,y)=l means as usual that

the node x is a predecessor of the node y. The vector m(k)(-,y)
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representing the k-th power of M in the y-th node is equal to
I n

m(k)(-,y)= r- m(k-l)(-,z)*m(z,y)= - m(k-.1)(-,z)
z=1 M( Z,y)=I

But m(z,y)-l means that the node z is the predecessor of the node y.

Hence constructing such a vector requires only sending to the given

node vectors of the previous power of M from this node's predecessors.

The existing communication links can be readily used to carry that

task.

To further decrease the communication traffic we can send only

this part of a vector m(k-l)(-,z) which contains 3's not sent in the

previous steps and not to store O's at all. In fact, initially each

node knows only l's of its own vector. Thus, in each step k we have

to send names of nodes by which the vector m(k-l)(-,z) was extended in

the previous step.

A node y can recognize that it has constructed the entire vector

m(k)(-,y) when in some-step k all the node names received have already

reached the node y before. Indeed, if there exists a node x such that

L(x,y),k-1 then on the shortest path form x to y there is a node z

such that L(z,y)-k. Therefore the name of z reaches the node y at the

k-th step (and never before) contradicting the assumption about the

step k. The number of unique names received until the step k is equal

to the network size n, and the longest distance in the network from

any node to the given node y is equal to k-l. We will refer to that

latter value as a relative diameter D(y) of the node y.

In quite a similar way to the termination state token propagation

the nodes can propagate also tokens representing the biggest distances

found. Each node sends out the maximum value of distances received on

input and its own relative diameter (or step number, if the relative

diameter is not evaluated yet).

The network diameter D is equal to such node x's output token

that is first repeated after the step 2*0(y).

4 . . . . . . . . . . ......... - , . . . . . .
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Following is the complete algorithm for finding the network

diameter D.

hWQRL 13. DISTRIBUTED DIAMETER EVALUATION FOR A NODE X.

INPUT FORMAT: (k,Nl,N2,...,Nn,T](i)

where N1(i),...,Nn(i) are the input module identifiers received
at the i-th input by module X, k(i) is the number of identifiers
(module names) received and T(i) is the biggest distance token.
For every node x, attach the following:

Let D be the diameter of a global network,
CNT be the index counter (t),
Dx be the local diameter value of node x,
(ID) be the set of all the input module names received by node x,
{T) be the set of all the distance tokens received by node x,
TO,PRE_TO be the output distance token and the previous

output distance token respectively,
STK be a stack of identifiers collected from the input,
" NER_ID(y) be a Boolean function which returns "true" if y

is a new identifier to node x, and
SOID} be the set of output identifiers.

INITIALIZATION: CNT-I. D=O. Dx=O. PUSH(x)onto STK. (OID)={x}.

1. New-'O'B.
2. Do the following for every input i of node x:
3. Do the following for j = 1 to k(i):
4. If NEWID(Nj(i)) then PUSH(Nj(i)), New-'VB.
5. End.
6. End.
7. If New then Dx-CNT-2.
9. If Dx=O then TO-CW, else TO-MAX(Dx,(T).
9. If CNT>Dx*2 & PRETO-TO then D=TO.
10. PRETO-TO.
ll.If D=0 then set (OID) = STK, n = the length of STK.

else set (OID) = 0, n = 0, STK = empty. 0

To verify the correctness of that rule, let v denote such a node

that D(v)=D. Since L(v,y)<=D(y) then in the step D(y)+L(v,y)+l the

token D(y)+l sent from v reaches y. From that step on the output

tokens from y will grow until they reach D.

According to that rule, every node v will know that D(v)=D at the

step 2*D+l.

As we use the existing communication links to accomodate traffic

of signals created by this algorithm we can attached these signals to

the messages communicated by the main computation. Therefore the

steps of the algorithm for finding the network diameter will

L-I
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correspond to local indexes of the termination detection algorithm.

Consequently the first instant at which the entire computation for

finding diameter can be stopped corresponds to the index 2*D+1.

The entire termination detection algorithm, including finding the

network diameter, consists of three phases. At the beginning, for

indexes 1 to D three streams of signals are flowing through the

network:

1. Termination state tokens.

2. Names of nodes for constructing connectivity vectors. This

stream gradually dies as the nodes complete building their vectors.

* 3. The biggest distance tokens.

Then for indexes D+1 to 2*D+1 two streams, the first and the

third, are active. Finally, for indexes greater than 2*D only

termination state tokens flow as all the nodes know the diameter D and

the auxiliary algorithm of finding the diameter stops.

The distributed diameter finding algorithm involves additional

communication overhead (stream 2 above). Therefore the use of the

diameter computed during configuration compilation by the Configurator

is preferred. But it is justified only when every module in the DSE

system participates in only one DSE. Otherwise the configuration may

represent a merger of all the individual DSE's involved. Such a

merger may have smaller diameter than some of its constituents.

As the distributed diameter finding algorithm is not generated by

the current implementation, it is the user's responsibility to provide

correct diameter (the maximum value of all the possible diameters)
through a CSL specification, if necessary.
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16.3 GENERAL DESCRIPTION

To give an idea of how to specify a module involved in a DSE

system, we first present an example of a set of nested simultaneous

equations without involvement with a DSE system:

1. MODULE: NESTHOD;
2. SOURCE: NESTIN;
3. TARGET: NESTOUT;

4. 1 NESTIN FILE,
2 NESTREC RECORD,
3 (K1,X2,K3,K4) FLD (PIC 'B9.VOO');

5. 1 NESTOUT FILE,
2 OUTREC RECORD,
3 (X,Y,A,B,C,D) ARE FLD (PIC 'BBS(5)9.V(5)9');

6. BLOCK BLKI: MAX ITER IS 100;
7. X=A* Y+B;
8. BLOCK BLK2: MAX ITER IS 100;
9. A - 0.2 * B + K1 + X -X;
10. B = 0.2 * B + K2;
11. END BLK2; (to be continued)

12. Y - C * X + D;
13. BLOCK BLK3: MAX ITER IS 100;
14. C - 0.2 * D + K3 + Y Y;
15. D = 0.2 * C + K4;
16. END BLK3;
17. END BLK1;

By adding the assertion: (KI,K2,K3,K4)DEPENDS_ON(X,Y,AB,C,D)

after line 6, NESTMOD becomes a concurrent module participating in a

DSE system. The DEPENDSON statement indicates that there is an

external "environment" that computes KI, K2, K3 and K4 based on X, Y,

A, 8, C and D in some unknown way. Module NESTMOD cannot terminate an

iteration if the convergence condition of the external "environment"

is not satisfied. In other words, the presence of a DEPENDSON

statement is a necessary condition of a module's participation in a
DSE system.

In an array graph (see section 5.1), a set of simultaneous

equations is represented as an "undecomposable" MSCC. A scheduler can

unravel the MSCC and produce an iterative procedure to solve it. A

MSCC can be unravelled in many different ways each of which leads to a

differently blocked structure. Since the equation written sequence

|'.
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affects the speed of convergence and stability of the system, the

MODEL compiler unravels a MSCC according to the equation written

order. The order imposed by data dependency is also followed in a

unravelled MSCC. This gives the developer of the system some freedom

in adjusting the speed of convergence as well as stability of the

solution process.

A BLOCK statement in MODEL allows a user to specify the solution

method (currently Gauss-Seidel), relative error, maximum iteration

limit and nesting structure of the iterative procedures. A user can

use the block statements to identify the dense clusters in a

simultaneous equation system.

The presence of an external dependency statement in a MSCC is a

necessary condition of the MSCC's involvement in a DSE system,

therefore it changes the translation process for the module.

16.4 SCHEDULING

There is no changes made in the stages before scheduling.

There are two major recursive procedures in the scheduler-

SCHEDULEGRAPH and SIMUL_BLK. The modifications are made in procedure

SIMULBLK.

Every BLOCK statement has a corresponding block structure created

during syntax analysis. Each block structure contains all the

information specified in the BLOCK statement and the scope of the

block. The MODEL compiler also creates, automatically, a "universal

block" which scopes from zero to the maximum statement nunber reached

during the syntax analysis of a MODEL specification.

Procedure SCHEDULE-GRAPH can topologically sort an array graph

and produces flowchart for the sorted elements. It calls procedure

SIMULBLK, if a multi-node MSCC is found in the graph. SIMULBLK

unravels the nested block structure in a MSCC. Following is the

description of procedure SIMUL_BLK.

6
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Alaorit 14. MSCC UNRAVELLING (Procedure Name: SIMULBLK)

Input : A MSCC, A list of BLOCK statements
Output: A flowchart of the unravelled MSCC with proper block structure

1. Find the first and last statement numbers in the MSCC.
2. Find the smallest BLOCK cur_blk which contains the

entire MSCC.
3. Set dpds-nil.4. For every element e in the MSCC do the following:
5. If e is a DEPENDS_ON statement
6. then do;
7. Set nesting=O.
8. For each member b in the BLOCK list do the following:
9. If the b's begin statement ) curblk's begin statement

and b's end statement 4 curblk's end statement
10. then do;
11. if the statement number of e > b's begin statement
12. then nesting=nesting+l.
13. If the statement number of e • b's end statement
14. then nesting-nesting-1.
15. End.
16. End.
17. If nesting < 2 then do;
18. set dpds=e.
19. Cut the edge from e (a DEPENDSON statement)

to its target variable(s).
20. End.
21. End.
22. End.
23. If dpds=nil then do;

/* find the First Element FE and cut backwards edges */
24. If the first statement in the current block is a BLOCK statement
25. then set FE to be the entire BLOCK.
26. else set FE to be the first statement in the current block.
27. Do the following for each element e in the MSCC.
28. If e does not belong to FE and there is an edge emitting

from e to FE then cut the edge.
29. If e belongs to FE then if there is an edge emitting from e

to e, cut the edge.30. End.
31. End.
32. If the cur_blk bears no tag or bears a tag "SEXT"
33. then do;
34. If dpdsonil
35. then mark the tag of cur_blk "SEA"
36. else mark the tag of cur blk "DONE".
37. Collect all the direct or indirect target FLD nodes

as the initialization variables for this MSCC.
38. Create a header of a simultaneous block for this MSCC.
39. Recursively call SCHEDULEGRAPH to schedule the modified MSCC.
40. If dpds=nill then Set the curblk tag = "
41. else set the cur_.blk tag = "3EXT".
42. Create an END mark of the simultaneous block in the flowchart.43. End.
44. Else recursively call SCHEDULEGRAPH to schedule the modified

MSCC. 0

The above algorithm consists of three major steps:

i) Find proper edge(s) to cut.

This step can be further divided into two parts:
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a) Find DEPENDS_ON statements on the current level of BLOCK group

nesting.

This is done by lines 1-21. Line 1 determines the scope

of the given MSCC. Line 2 finds the smallest block which

contains the entire MSCC and establishes the current level of

nesting in BLOCK groups (curblk). Since the MODEL compiler

creates, automatically, a "universal block" enclosing all the

statements in a MODEL specification, curblk always exists.

Only the DEPENDSON statements inside this BLOCK group but

not enclosed in nested BLOCK groups are of interest here. Such

DEPENDSON statements are identified at line 18. Lines 7-17

check the nesting of DEPENDS_ON statement in BLOCK groups. The

cutting of the edge from a found DEPENDSON statement to its

target variable is done in line 19. Its effect is shown in the

following figure.

I I
I Definition of the fields
v

Fields in RO
v w

o -o To higher level nodes of ROT Re .... >
Equations o-- o in a TARGET file

in the MSCC
v

DEPDENDS ON0 +
:<-(Cut)

0 v
o -o From higher level data nodes of RI

o RI <.
o- o in a SOURCE file

0
v v

0 Fields in RI

0 v Reference of the fields in RI

FIGURE 27. Cutting an edge for a 1SCC enclosing a
DEPENDSON statement

Recall that the LHS variable of a DEPENDSON statement

• U . . : . :: - : : : " ' . .. ... .,
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must be a RECD (or a higher level) node in a source file and

the LHS variables must be RECD (or higher level) nodes in

target files. The cutting allows the topological sorter,
SCHEDULEGRAPH, to arrange proper computation sequence

according to the dependency in the array graph. The result

flowchart of the above array graph after cutting and sorting is

as follows.

READ RI
unpacking fields in RI
computation

packing fields in ROWRITE RO

b) Find the first element FE in the given MSCC

This task is performed by lines 23-31 only when no current

level DEPENDSON can be found. If the first statement in the

current block is a BLOCK statement, we have the following MODEL

specification:

BLOCK BLKl;
BLOCK BLK2;a.1

a2
END BLK2;
a3
a4
a5

END BLKl;

Assertion al, a2 are identified as FE. Where

ai,i=l,2,3,4..., are assertions numbered according to their

written sequence.

Taking the first immediate block as FE prevents cutting

the edges inside the first block, which will result in a

different nesting structure than the one specified by the user.

For example, if we have the above MODEL specification with the

following array graph:
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o o

I I
v

al- >a2<

a3->a4------>a5... o

Cutting the edge from al to a2 (or a2 to al) will leave us

a MSCC containing a2,a3,a4,a5... By using SIMUL_BLK, the

following flowchar will result:

ITER BLK2;al
ITER BLKl;

a2
a3
a4
aS

END BLKl;
END BLK2;

This is not consistent with the structure specified by the

user.

If there is no such an immediate block inside of a MSCC,

the first element (in the order of written sequence) must be

taken as FE.

Lines 27-30 cut the backward edges from the other elements

in the MSCC to FE. They also cut e-e type edges for the

elements in FE. This allows to unravel unnormalized form of

simultaneous equations.

Further unravelling of the modified MSCC is done by a

* recursive call to SCHEDULE_GRAPH.

ii) Collect a list of variable names needed for initialization.

Each block of iterative procedure needs to initialize all

the variables that are LHS' of equations inside the block. Line

37 performs this task. Note that the field variables indirectly

involved in LHS of a DEPENDS_ON statement must also be included

0i
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in the initialization process.

iii) Creating a block structure in the flowchart, if necessary.

A simul-block structure (type 3) in a flowchart is created

only if the entire MSCC is enclosed in a block statement

(cur blk) which bears no tag , or "SEXT" tag. The latter means

that there is a DEPENDSON statement at the current level.

Note that the relative error, iteration limit and other

block information contained in a outer block statement are

propagated inward to the automatically generated nested block(s).

Such an unravelling process can effectively find the nested

structure of a MSCC involved in a DSE system and automatically attach

a block (an iterative procedure) to solve those closely related

equations in order to reduce communication cost.

As an example, let us consider the following MSCC consisting of

six assertions. We assume that the user did not specify any BLOCK

structures.

----- > S-alII
v

ai( DEPENDSON)

v v
T-al al

v v
+a6<-a5->,a2->a3-)>a4 +a6'<-a5->-a2->a3-,a4

S v I v

(a) (b)

FIGURE 28. MSCCs in an array graph

where ai,i=l... 6, are assertions named in their written sequence.

Assertion al is a DEPENDSON statement in (a) but is an ordinary one

in (b). S-al and T-al are source and target (record) variables of al

respectively.

I I! For the array graph in Figure 28(a), SIMUL_BLK first cuts the

.:*i- - ~ ..
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edge from al to its target T-al by line 22. Then a block is created

(the "universal block") and a new MSCC consisting of only a2,a3,a4 and

a5 is handed to be scheduled recursively. Procedure SIMULBLK called

again from SCHEDULEGRAPH in scheduling the new MSCC, cuts the edge

from a.5 to a2 (FE) and attaches a block enclosing a2-a5.

The following is the produced flowchart:

Block 1
T-al
Block 2

a2
a3
a4
a5

End block 2
a6

S-al
al

End block 1

For the MSCC in Figure 28(b), although it has the same structure

C as the one in Figure 28(a), the following flowchart is produced (c.f.

lines 32-41).

Block 1
al
a2
a3
a4
a5
a6

End block 1

Using BLOCK statements, the user can easily create the flowchart

similar to the one created for Figure 28(b).

16.5 THE PROCEDURE "PREPARE"

After the scheduling, a new procedure PREPARE is added to attach

the control token data fields to be used in the termination algorithm.

The procedure PREPARE has two tasks:

i) collect the target and source record names and corresponding

"*
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iteration block numbers in a MSCC of a DSE system

ii) modify the collected records' lengths

The collected record names are stored in a data structure

SIMUNODES in the form of a list. To present the algorithm for

scanning the flowchart, it is necessary to present the data structure

" - of the flowchart first.

-" . There are four kinds of data nodes in a flowchart.

a) Simple data or assertion nodes

b) FOR nodes (enclosing a FOR loop)

c) Sublinear block nodes (enclosing a sublinear block)

d) Simultaneous block nodes (enclosing a simultaneous block)

The data structure description for these four kinds of nodes is

as follows.

DCL 1 NELMNT BASED (NLMNPTR),
2 NXTNU4N PTR, /* POINTER TO NEXT FLOWCHART ELEMENT "/
2 NLMNTYPE FIXED BIN, /* =1 SIMPLE NODE-ELEMENT
2 NODES FIXED BIN, /* INDEX IN THE DICTIONARY W/

2 LVL FIXED BIN; /* LEVEL OF FOR LOOP W/

DCL 1 FELMNT BASED (FL4NPTR),
2 NXTFLMN PTR, /* POINTER TO NEXT FLOWCHART ELEMENT /
2 FLNNTYPE FIXED BIN, /* =2 FOR-ELEMENT
2 ELMNTLIST PTR, /* POINTS TO A LIST OF LOOP ELEMENTS W/

2 FORNAME FIXED BIN, /R NAME OF THE LOOP CONTROL VARIABLE t/

2 FORRANGE FIXED BIN, /* LOOP RANGE
2 VIRINREC bit( 1); /* VIRTUAL OR PHYSICAL

DCL 1 SEU4NT BASED (SLMNPTR),
2 NXTSU4N PTR, /* POINTER TO NEXT FLOWCHART ELEMENT W/

2 SLMNTYPE FIXED BIN, /* =3 SIMUL BLK, =4 SUBLINEAR BLK /
2 SIJ4NLIST PTR, /* POINTS TO LIST OF BLK ELEMENTS Wf

* 2 SLMNLABEL CHAR( MAXLENNAME), /* BLOCK NAME FROM USER Wf

2 SIMNLEVEL FIXED BIN, /W BLOCK NESTING LEVEL
2 SLMNMETHOD FIXED BIN, /* SOLUTION METHOD CODE
2 SIMRNMXITER FLOAT DEC, /* MAXIMUM ALLOWABLE ITERATION Wf
2 SLMNRELERROR FLOAT DEC, /- RELATIVE ERROR
2 SL4NNAME FIXED BIN, /* ITERATION CONTROL VAR NAME f/

2 SLMNVARS PTR; /W INITIALIZATION VARIABLE LIST t/

FIGURE 29. Data structures of a flowchart

6 . = '_; ,' X:
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A typical flowchart skeleton is as follows.

(BEGIN)

a FILE (open]

I

v

a RECD (read]

V V

v ASSR SIMU B OCK1 FOR III

b a dI !I II Ii (END FOR 1)
C do while] v

v +
I i- --- -a -ASSRS a RECD [write] i

I ! v

v v

S a FILE (close] a ASSR

(END) (END SIMU BLOCK)

FIGURE 30. Representation of a flowchart

Task (i) is accomplished by the following algorithm.
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15. FINDING EXTERNAL RECORD NAMES IN A MSCC
(Procedure Name: GENERATE)

Input : A flowchart generated by the scheduler
Output: A list of record nodes with corresponding iteration

level numbers

Let "flowchart" be the pointer to the flowchart produced by
the scheduler (SCHEDULE).
The initial step is to call GENERATE("flowchart",O).

1. GENERATE(root,insimu_blk) recursive.
2. Do the following for each node in the flowchart from the root:
3. If the node is a single node
4. then if insimublk=l &

the current node is a DEPENDSON assertion
6. then do;
7. Put in SIMU_NODE list all the successors and
8. predecessors of "node", whose attribute is "ECD"
9. and save the current iteration block number.
10. end.
11. else if the node is a simultaneous block node
13. then call GENERATE(next pointer,i).
14. else call GENERATE( next pointer,insimu_block).
15. End. 0

The data structure ot SIMU_NODES is as follows.

DCL 1 SIMU NODES BASED(SPTR),
2 NDS FIXED BIN, /- INDEX OF A RECD NODE IN SYMBOL TABLE */
2 SL NAME FIXED BIN,/- ITERATION BLOCK (LEVEL) NUMBER
2 NEXT PTR; /* POINTS TO NEXT SIMU_ NODE tf

Task (ii) is accomplished by adding 10 to the computed record

lengths of the records stored in SIMU-NODES. The physical attachment

rof the token in the PL/I program is performed in code generation

(CODEGEN). To explain the attachment, let XGIR be the record involved

in a DEPENDSON statement, either LHS or RHS. Then the follwing data

structure will appear in the generated PL/I program:

1 X FILE,
2 XRI(-) RECORD,

3 XF1I1..

2 XR2(*) RECORD,
3 XF21

2 XG(*) GRP,
3 XGlR( *) RECORD,

4 XF32 ....

4 SITS FLD (PIC '9999999999'),
3 XG2R(7) RECORD,
4 XF41 ...

FIGURE 31. Representation of a file structure and
the patched token field
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16.6 CODE GENERATION

16.6.1 ACQUIRING THE DIAMETER OF A NETWORK

As mentioned earlier, the Configurator computes the diameter of a

DSE system and places a logical name assignment conand in the

individual JCL program for each module in a DSE system:

SDEFTNE MAXD "integer".

Where MAX_D is a logical name and "integer" is the computed

diameter. The value of MAXD is then transferred into individual

modules at runtime.

In the beginning of each PL/I program generated for the modules

involved in the DSE system, there are statements for acquiring the

diameter:

LN_= MAX_D I
EQV_AME-' ;
STSSVALUE=SYS3TRNLOG( LN_ IUSAS, L .LENGTH, EQVNAME,,, );
MAX_D=EQV NAME;

FIGURE 32. PL/I code for acquiring network diameter

The acquired diameter is stored in MAX_D and used in the

termination control algorithm. Note that SYSSTRNLOG is the logical

name translation routine in VMS.

16.6.2 ATTACHMENT OF THE TERMINATION CONTROL ALGORITHM

The attaching process is relatively straightforward. So we

concentrate only on the functional description of the attached program

rather than the programs that produce the attachment.

The current version of MODEL uses, as default, the Gauss-Seidel

iterative procedure to solve simultaneous equations. The iterative

procedure consists of three parts:

i) The initialization sequence,
ii) the convergence procedure, and

iii) the Gauss-Seidel recalculation loop.

*]
I1
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Detailed description of the initialization sequence generation and

convergence procedure generation can be found in (Greenberg, 81].

The initialization sequence should be modified if the module is

involved in a DSE system. This is accomplished in the scheduling

stage by modifying the initialization node list (see previous

section). The termination control algorithm is attached to the

recalculation loop which consists of a) controlled READ and unpacking,

b) controlled WRITE, and c) token calculation.

The original recalculation loop has the following structure:

1. $ITERCNVRG_1 = '0'8;
2. DO SITERCNTR_1 = 1 TO 50 WHILE(-SITERCNVRG1);
3. SITERCNVRG_1 =''B;
4. <list of recalculations)
5. <list of nested iterative procedures)
6. IF -SITER_CNVRG_2 THEN $ITERSCNVRG_1 = '01B;
7. END;

FIGURE 33. The recalculation procedure for simultaneous equations

Where $ITERCNVRGi and SITERCNTRi are the Boolean and integer

control variables of i-th nesting level respectively. The number 50

is the maximum iteration limit (taken from the BLOCK structure).

The attachment of the termination algorithm is determined by the

existence of DEPENDSON statement in a simultaneous block. In other

words, for each simultaneous block containing DEPENDSON statement(s),

there is an extra outer block - the termination control condition.

After attaching the termination control algorithm, assuming MAX_D

is the maximum diameter acquired from the JCL statement, the iterative

procedure has the following structure:
*!

6i

*I
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$CNT$1=O; SPREITOS1=l; SRLK$1='I'b;

DO WHILE(SPRE_ITOS1 <= D + 1); /* Termination control condition -/
1. SITERCNVRG_1 = 'O'B;
2. DO SITER_CNTR_1 = 1 TO 50

WHILE (^$ITERCNVRG_1 & SPREITO$1=MAXD+l);
3. SITERCNVRG_1= '1'8;

<read label>:;
cSRLKS controlled READ action> /* Controlled READ if
<$RLK$ controlled unpacking> /* Controlled Unpacking if

4. <list of recalculations)
5. <list of nested iterative procedures>
6. IF ^SITERCNVRG_2 THEN SITERCNVRGl = '018;

<$RLK$ controlled unpacking for control field $ITS>
IF SCNTS1=O THEN SITO3l=0; /* Token calculation ifELSE DO;

IF ^SITERCNVRG_1 THEN SITO$1=O;
ELSE IF SPRE_ITOS < MININP(1) THEN S1TOS1=SPREITOS1 + 1;

ELSE $ITOSl=MININP(1)+ I;
END /* SCNTSl>O */;
SPRE_ITOS I=5 ITO 1;
CALL WRITEIT1; /* Write tokens tf
IF SPREITOS1 < MAXD + 1
THEN DO; /* Controlled WRITE if

<output actions in the iterative procedure)
END /* OF $CNT$1<= */;
SRLK$1='O'B; /* Unlock SRLK$ if

7. END I* $ITERCNTR1 *I ;
END /* SCNTSl<=$PREITO$1 */

FIG JRE 34. The recalculation procedure with termination control

The correspondence between the attached version and the original

version can be identified by the statement numbers marked.

The algorithm uses several control variables, the correspondence

with the variable names given in the termination algorithm description

is as follows.

SCNTSi corresponds to the index of the i-th block
calculation (unused, for debugging)

SPREITO$i corresponds to the i-th block's PRE_O variable
SITO~i corresponds to the i-th block's 0 variable
SRLKSi the i-th block's control variable for controlling

the execution of the first READ operation

SRLKi is used to disable the first READ operation inside of the

i-th iterative block associated with a DSE system. The starting

values of the equations must be from the INITIAL statements.

There are also two procedures used by the control algorithm:

MININPi and WRITE_ITi for each iterative block i. MIN_INPi

corresponds to the MIN function in the description of the control

-* ' • - " , . ,. . . '- ." " " - , " ":' ." , '' ! : .,L ,,,. .,.,,' ' -, -, , ., .
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algorithm. It is generated by the use of the SIMUNODES structure.

Assuming FIl,FI2, ... FIn are the input records to the module involved

in a DSE system at the i-th iterative block, KININPi has the

following format in PL/I:

MIN_INPi :PROC( I) RETURNS( FIXED BIN);
DCL (I,MIN-I) FIXED BIN;
MIN_I=F1I.SITS;
IF F12.$IT$ K MINI THEN MIN_I=FI2.SIT$;

IF FIn.SITS < MINI THEN KINI=FIn.$ITS;
RETURN(MIN_I);
END MININPi;

WRITEITi is a procedure for sending the control tokens. It is

also generated by using the SIMU_NODE structure. Assuming F01, F02,

... FOn are the output records involved in a DES system at i-th

block, The WRITEITi procedure has the following format:

* WRITEITi:PROC;
FOI.$IT$ = $ITO$i;
F02.$IT$ = $1TO3i;

FOn.SiT$ = ITOSi;
RETURN;
END WRITEITi;

0



APPENDIX A

UEXAPLES

Al. THE RESOURCE ALLOCATION EXAMPLE

This appendix provides the details omitted in the previous parts.

In reading this appendix, some basic knowledge of VAX-11 PL/I and VMS

is necessary in order to justify the correctness of the implementation

and consistency with the description given before.

Al. 1 TlE PHILOSOPHER MODULE

M1lrlFI PnY"ESA R: VERSTON WITH BLOCK 'STRICT11RE ON VA I I 'v O cwT:BE 1)4. i'.4 l' , ; ',

1* P MODULE SPECIFIC-TION *,
e]/*********4**4**********************f********************t** /**

MIDILE: PI!
2 S.OURCE: ALL.C I,

3 TAPCET:RQF0RELI:4

FILE ,ESC"RIPTIONS:

/ [,ESCRIPTION F ALLOC(I rILE

4 1 ALLCi 7LE O7PG MAIL, 7* FILE OF ALLrATT=N
4 2 '5.'':A'* IS RECO'Rfl * ND.I"%' { LLI :Iah4

":3 ~POCAD is PLD( P .'* RECEVTN' :'P',,:'
4 " : L':C A IS =D PIC .:.o ... .. : '..' 4T _4T

- 171 -
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/4rJECPIPTICQN C. PErFL fILT;E

PEQPEL1 FILE ORG lS MAIL. /*TAR(.ET PILE OFPEE
2MSGP(*) IS RECORD. /* INDIVIDAlk P~fE'_

5 3PROUD~ IS FLD)PIC /f K*SNDING PKOCESS
I PRQ-A-L IS FLDKCHAP k ' PEOU1.ES':FPE LESEPE

C C:'CKR I S Fif)j n XQQ;Q i p I rC- AT 9EPE;l
3PEE:' ) TS FLD(PIC ;Q /4, Nc'EEjfl ESU t YFMT-

5 '11.) SUIBSCRIPT:

'lIDI)=F 11=1 THEN4 I
ELSE IF PDO9 P ECC THENIY1-I

;LE-z 1I
9

9 /--------------------- PHIL I ----------------------
'* I-IFE TINE OF PI *1

16) PEQRELI.CLO(YRIP'4F TI~I THEN TIME
I' ~~~~~ELSE ALLC .EL:1- IIIth-~I~ C94C'-
I" +TIME:

it
PEQPEL.PR0CID(II)=t:

RE9PELI.RILIR-SL(II)=IF 1!=I TH4EN '9E0' 4* PIJE5;T I Nr c-

t ~~~~~ELSE IF ROEI%:§'I- :F
THEN <FEL'
ELSE rEQ'/

PEgPELl.RES(IIj!= '.J:l J=2"! **:Oi~.i .:4CD+., 0

( 4 SYSGENI IS GROUP(TNTERIM.I'(lI*H!
15 IYSI3EN2 IS GPOUP(END.REQREL.MSGPok
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PAN(F NO. RANOF DEFINITION WHERE DUSIED

I END OF FIL-EtO IM
2 END, WCRE1. M'-7;

* CONISTANT INIT: ;EP-;EL

-~ ~ ~ ~ ~ N' O-. --------- -----

!NODE NAME !DIMENSION NO.

ASSERTjiON(5l):

AASS 1 0 I

AAS.'80 IV

LMrGA I V,

'*ANAME(FNJ RECIPELI.

*r..-NAME: INTFOEI.)

i'IV

P~jflC.l IV-

GOLOBAL SUBSCRIPT:

----------- --------------------------------
NiTE: ENTRY FDL. I-DlIMElNSION MJiMBEP S

2-PNYSCAL(P/VIR~l6~L' JDIMENSIO
:-WINDOW SIE IF MARE TLAR ('NE
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Cl r ES NAME DIESCRIPTTC-N E-VENV
P MrEiLE1 NAME FRI fl9E ZETfNF

3 7 aL-!iCI rR T'PE TL... v

S~~~ ; P~LAETiflN EQElS' P CTR'E III A.FT N. D~r 7 'CI

~ AA$Q('Ar.FPT'FN
47 RNEREL.M PF A NAME ,5WnDPE-- .MG A T CFP AcW;ThTh,

4 AA$%.i>'ENTC'
4C4  9lm!( FIELD' TN~CQDpc-F:~ TAP,;FT OF ZC:rt;\ -- ; -4

END !TE;'ATI:N 7 1

4A FFJE! pprr_ T fl Zi :I E;rN PECOR '!Fr ;;FIE N, m-6F -P
I MA (II ~ A ,FFPTT05N

49~EJFEL 1VP FIELD IN RECORPO RF', P; -4p7AE rrP -P;T%!N:A:.
4'- RE"FEL I M-6,F Ff'iR TN FILE KE''P'. WRITE rr

.1iNfITI3NAL ;LCJ F IJEA %OE TI M
ALLU I1 ~M KUE T 'P N FILE A"L'F tn;~ EC
k; Al I, PPO" A D Ff8LD IN RECORD Al L':

*41'1 ALLC t LODLA F TFLD1 IN WEDD~LJ
END CONDT7ON4L PLO" ;t1 % ~ IJE .T j
END jTEP'ATIRN CP ;T'

44 REORRQ1 FILE t
2 SYSGrEN I "P

END

PRACRJ4 'RE OPFTIONS' (MAIN):
OC L ALLCI RECO-IrD SEl-I INPIJT:
DCL IFETALLOCIS HIT'1' INIT' i

DCL EYISzTALLOCP; BIT('- TINT7'<,
71CL ENDF!ILEIALLIcs BITt1 TN!Tf AR)!
rl. ALt/ICf! 1S CAP' 20) VARYIV, IN17f

71CL A'LLOL~INDX WIYEDL BIN:
71CL IKINTEPINSJt! BIT'!'. SP-INTEPIMSU~ F IrED BItN:

CL RErRELL-MSO&CI ':R CAP'1r':
OCL PEOREL! _mSCR _CBI' 2'SYAPFCF

TL SY4 F INED AIN:
XL1 ALLOCI t$'3A3 :A'I \JAPV :NF:
5( L ALLrjCI-M5GA-INCY FI(EDt BIN:
rlf( LRELIT qEfO7r'qr --,E)L ~T~T
DC L IFS;TREOREL:T BIT'1, 'NIT' - l

- (r $FRDRJJF CHAFI ( 'jA
DCL ERRPAF FILE C ~fg C~F IP'IlT,

*i CL EpPRORF2IT ,ITI I T7  INIT' 3: )

rm( SNOT-DONE2':) PIT(I !
nrL 9EPRC'R PIT-1) INIT' i
rfL £ TMP'L)AL FO-il PIN4

EtCLARE
I LL:i.

* :,'Cu A ' I J.

S -- .- *~- U<41
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DECLARE

-I PEO EL1

CLCKR PIF.'qq7'.

Ti ARF
I INTER M,.

ENBSREOIREIMSGR2IBItI
DrL $11 FIXEDI PIN:
9C 412 PED PEIN:

OCL (TRUESELECTEDi BIT l) !NITT 'Ri
Ti .F4LSF. NOTS-ELE.NPOT '.ELEFTFl TI' TNITf>:

Fir I TIME BIJILTIN:
ON ENDFILE(ALLOC1S) BEGIN:*

- tlINnEFINEDF ILE (ERRORF) ;FRR~iF IT='
DECLARE FtI$LNVERR CiLOFBALRP VALUE cI ED BIwl 31,
T1, LARE RtRLK GLOBALPEF VALUE FIXED PIN 'lI
,'N ERROR BEGIN:'

* TF ONCODE( =RSRLk' THEN GOT') SPOIPS:
IF '(tERROR! THEN CALL PES~iNALO:
IF ONCODEI =PII$CNVERR THEN ii:

SERROR101B
IF ERRORK-BIT THEN WRITE PILE(ERPORF) FROM SPPPCiP ;IIFI:

END;
ELS'E CALL RES;IGNALT),
END:

M,;(ILBL-NAME=:'ALLC1'lLMBX:0 - MALLENOTH=2C:*
STSSVAULLE= Y';C REMBX (PERMANENT. CHANNEL-,MAX ThENOrTH, .PROTJIA'. . MA ILBC't f~AMF;:-
LNALLiJCIS= ALLuIS

c. AM Il Fz.cYCTF'NLi . INJAL LOCI1'; L-.LENGTH. ER'W NAME..
s t- stuce ss th4or plit s k ip I ist itrisIa t n errIor

'iPEN FILE(ALLIT 'S) INPU T T ITLE (EOlVAME)
SXS-SUBSTR(EQV-NAME. L-LENGTHT:
'TSSVALUE=3Y IA0,Ii.NSXS,C-HANNEL...
IF 'STrS:UtCErr THEN EXI;TLLOCIS_=( B

Si:lT _p:INE ( I)='B:
DJO WHILE (SNOLTDONE I i:

III = Il1 +1:
1&: 111=1 THEN PE0REL1.QJKPLK) ;FO'!

ELSE IF REORELI O.R3jCl ;11= ='E;" THENi RE~iREL 1. RO1_iRAL(2:E

IF 111=1 THEN !NTERIM.IYi(,2=!

ELS-E IF REPQ~PJR'> EO' THEN INTERIM (lK:,TJTERIM.ti

:F ;r:,=i TEN :C'
IF INTERIM. TUZ, TLj--N fiO:
SBcINTERIMSIYI: F.:
IRIlNTEPIMIQt)(:0

_END:11ELS-E DO:

SR INTER IM$: 91=7

ENE:

* ; R N T E I M S jv ! = f :A
-P .fl:;



ELSE DO'!

END:
FNDIREr'REu- I MWiR! -,-RE'TOREL I. Pr'I'KPL, 2' EL :- ?41
[D0 $12 =1 TO 5

REOREL1I. RES 12 1=S I2=t SI-= 2'
END:
REDFREL1. PRW-A 0= LI
IF $11=1 THEN REFlPELI.CLOCKR=TIME:
ELS OE L LlfrRALO'Th ! NTEIm.I(+NE M!y1
AIL)fI.CLIKA(1 INIFRIM 'flfl)+INTFRI9 ?.yl(l +TTNE!

RRE clRID-

P REI- KlWP IND: =REflRELI M.R 'lNfly+1
5UB ~ ~_M TR(R N X FOREL1 I'b WFEEL p-1r, 'Nt.rQ-lFI.Cu l~'

RECRE~ %uR NDX m RE L 1, -mi T*t

r~ -RFLl-MSOK1INDY=PE0REL1&EAFI1E I-----------F!.9P
DO $12 =1 TO 5:

P5rRELL..MSOF{JNDX=REORELL-MS'3OR-ND~iXst

Lt-RERELIT=REORE..LT':
STS$VALUE=S$YS:$TRNLOO (LN-PEOREL IT. LAENOiTR, EOVJ4AM,..i,
TF AST;SSLIr!ESS THEN PUT 3K P 3T PANrI TIfN ER'

IS=3JJBSTP(EOQ.NAME. lL-.LENiTH)!
-SVLUE3YSAA-SICNW$%$. HANNEL...
TF 'STS$SUCCESS~ THEN D0:
P T S K IP L I TI ('*ERROR: NO FCHANNEL AlSCIU, NEImg I I
ur TE FILE"REQREL1T) PROM (RE0REL1A3CF- ),
END;
ELSE DO:
rTSALIJE=SC$O1i(1, CHANNEL. ID$A:RITFVPr4k + If$M- _!. J r..

AtiD(RE9RELl-M$OGRF LNTREPL
IF 'STSSSI IrrF53 THEN 011T --kJIF LIST' twpIT: P .CESYnCE EC. 31 E'
rSTS$YALUE=SYS$WAITFR(Pi f
ST SVALUE=")Y'SDA'-.SN(CPANNEL '
END:

IP tg-JNTERIM$IXL THEN

$'= INTERIM.Itl2,)!
IRD-ALLOC IS::
$RWL=RD-ALn !S:

READ FILE (ALLOC 1 3' 1TNT:-L1 LSA'
ALLCI .J SOA..INDX= 1:
;ERROR-BUF=ALL:C I T
ALLOIC I- YSGCA-=ALLOiM S c '- 2:)'

$ ALLOC . PROC -IDv-$UBr TR (ALLOC 1, W6E.A C T YS -N
ALLYLCI _M:AA_ IDY-L- iLM 1-Dt 1

;ERROR=,! tB
INSPEC ALLOC 1 OLCCK 2) 2 , zINPEF '-IJiR3C' ALLiC, :mW4-- -1AT A :: sW

ALLOCI.CLOCK-A 2 ALC CLCA
I F $ERROR THEN tEFROR= A

IF FND$RE' RELL-MSOfR(2) THEN SNOT DO NE :)
N 1 ' M 4-L - ,

?F $BANTERIMSI =: BEN A'LML> I. ' ='k": A

FERLI -P-fREL:T: 4P17
TF BITRM1, 4E

I !PN:
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AI. 2 T711E R MODULE

MODEL PRO:ESScOR: VERSION WITH BLOCK STRICTURE ON VAY 1/750 AiC7OSER 04. 1%S4 '13 ~

1* P~ MODIE SPECIFICATION 4

1 MODLE:R:
2 SOURCE: REORELt
35 TARGET: ALLOC, QIJEUE.SIMUJLATION:

bt.4 4* THE FILE CAJEUE, SII-tATION ARE FOR RECORTING *
4
4 i* THE MAIL FILE RECEIVING MESSAGES ROM PHILOSCIPHERS .

it FILE DESCRIPTIONS: 4

DESCRIPTION OF REIREL FILE

4 t RE9REL IS FILE ORG IS MAIL.
4 2 MSORNN*) IS RECORD,
4 3 PRQCIDM IS FIELD (PIC'9'h, /* ID OIF PROCESS*'
4 3 PQOR-RJ IS FIELD 'CHAR 31.1* RE UST=RE_9.RELEASE=R- *1

4 3 ~CtOCKRM IS FIELD (PIC'Q9 Q999). /*TIME OF MESS i
4 3 RESMISl) IS FIELD (PIC'9'): /*VECTOR OF RE-cNJFXE,;*

5
5 /* THE LIFE TIMEOF R *1
5 END. REQREL.NSORM( I1=DATE>='8&923':
A
6 I4 THE DISTRIBUTING FILE -4DING MESSAGES TO PHILCISOPHERS *

It rESi;IPTION OF ALLCC FILE 4

6 1 ALLO: IS FILE KEY IS PROC.ID ORG TS POST,
6 2 MSOA4S(*) IS ORP./#GROUfP OF ALL OCATION MESS.AGES*/

53 MGA(Q:9Q) IS RECORD, i*INDIVIIJAL MESSAGE*1
A4 PROCE>J IS FIELD TCHAR 11h1/*ALOCATEDFf(S*

6 4 CLOCKA IS FIELD (PIC!9Q999W')I*TIME ':F &LLGAT!ONt/

'. DEFINE THE t OIF THE OUITPU)T RECORDS CAN RE DISTRIBUlTED AT TWE '-Ti CYCLE *
7 SIZE.LCC.MSGA(I)= IF SIZE.PROC(100 THEN Oti!ff7~~iii EL SE

DESCRIPTION OIF SIMUJLATI FILE

I SIN.LATION 1S FILE.
3 >01 IS REORD.

3 HOPI IS FIELDICHAR 125).
2 H02 IS RECORD.
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S HDF2 IS FIETIeCHAR 125
x 2 D3 1s RECORD.

sHEIF3 IS FIELEI(CHAR 125),
EVIENT(4) IS RECORD.
I RFEd.IE5T IS OP
4 4PROC-IDM IS FIEL1(IAR 4).

.3 4 FILLRI 1S F1ELD(CI4AR 0.
.34 Rrj-R-RLM I S FIE(4AR 3).
84 FILLER' IS FIELEI(CHAR 11.
94 RESM (5) is FIELfl(PIC 11)

4 FILLER3 IS FIELD(CHAP 1.
4 rLOCKR" IS FIEL.D(PyC*r'l**..

sk4 FILLR4 IS FIELD(CI4AR 21,
R ~ ALLOCATION'0 IS13 ORP,
:34 PILLERF IS FIELD(iCHAR I).
3 ~ 4 P~nf,-IA IS F1ELDWrHAR 4),

qILLER6 1S PIELDIWHAR ti.

SIMULATTON.HFW= REOIJEST ALI OrAT!ri
if) SIMULATION.HDF2=-'P-JD RiL RES3RC TIME P m TIME .1

P.1fl TIME
10~~~ - ' D TME'

11 ';1 MIAT ION. HDF3='=-

It
U2 (FIL LER1.FTLLER2.FILLER3.FILLER4FTLLEz,T.FLtI pA'
13 SPIJLATION.PROC-taM --REOREL.PRfjC-IDN:-

- 4 SPIJLATCiON.RE?4M -- E@REL. RESM!
15 SINIJLATION.CLOCO'R -REDREL. CLOCKRM:
16 SIM-I.ATION.PROC-JDA :SUBSTR (ALLOC. PROC-1 .6. 1)
17 SIMJLATION.CLOCI'(A =(LLC..CLACKA,
18
18 '4 THE (IJEIJE FILE, DEF1NED A%) TARGET To CHECK THE R *

/4 DESC.QRITION OF OUEUE FILE 4

18 1 19UEIJE IS FILE,
to 1 2 PP(-*O(*) IS RECORD. /* RECORDING THE HISTORY OF THE rlUEUE 6!
183 3 PRC)(:9Q) IS GROIP. /# PROCESS 9.JEJE ;OR EACH I 4/
181 4 PROC-JD IS FIELD 'PC''.* r OF PROCESS *
18 4 IN-ly IS FIELD (PIC19"9- 9W'
to OIJTJX IS FIELD (PIC'9/).!# INDEX OF PROESS IN ALLOCATIONS*f

18 4IE.) SGOU./ RE5,.(JRCE- VECTOR *1
1.9 5 CLAIM ISFIELD (PIC'V)./l*MAXIMlJM RESOUIRCES CLAIMED BY PROCESS*/
to 5 SLIAIREQ IS FIELD (PIC.'9'', /eSLW9 OF PECktESTc ; OP ES OURCES I N

18 IAJlEUE OKER */
1.9 5 SAT IS FIELD (BITfjfl:!.I4HETIER RESOIJRCES3 ARE AVAILABLE TOi.

* ~ ~ t SATISFY CLAIMS; IN ORDlER rF~tp iRE*
19 I RES-LIMIT 1S GROURj.

t4 2 I'&IRES(5) IS FIELD (PIC-?ll-'.NumKER riF RE-ScORCES IN SYSTEM THAT
20 MAY BE ALLOCATED'

* 20 /*DATA PARAMETERS*/
* - 20 '1. j. k) ARE SUBSCRIPTS: /I: SUBSRIPT AF RE91JEST/RELEASE mESSAOES:

* 21 .J, SUBSCRIPT 6tF RESOIURES-
21 I!: SIJtKCRIPT -* PROCESSES IN P)UEIIE. *i

21 / DEFINE SIZE OF (AUEUE. 4/1
21 SIZE.PRTC(I)=TF 1=1
21 THEN t
'I2 ELSE IF PEOREL.Rri-OR-PLMfIP='EL

21 THEN SIMEPPOCi!-lh-l
21 ELSE S17E.PRTC(I-11+1!
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22 I.DFINE THE NUMBER OF AVAILABEL RESOLIRCES IN THE SYSTEM. */
22 NMS-ES(J):t: /.*NE FORK IN EACH PnSITION./

23 /* DEFINE THE QUIEUE CONTENTS: *
23 QIJEIJE.PROCA,-D(I,K)= IF REO.REL.RQS'-RSRLM(Ih'REQj q, (k=SIZE.PRCI))1
23 THEN REOjREL.PROCJDM(I) /* P1194 *
23 ELSE Ui.PRCI(1,NIIk)!1* COPY *
2 4
24 /' DEFINE THE TNDE( FOR VARIABLELY SIZED QUEUE. *
24 INJ!X(I,K1: IF REQREL.P'L-ORYPLWI)=REQ'
24 THEN V
24 ELSE IF REQREL. PRC. I DM(I )A#iEU.E. PROC I D(I I- l
24 THEN TF k'Nt
-74 THEN!t
24 ELSE IN..IX(I,v-ti+1
24 EL SE IF KWI /* IST BE PEL. THE cl SIZE-I PUT PQE.ITNY+I ti

24 THEN 2
24 ELSE INJX(I.W-I)'2-

25 /* DEFINE TH4E OUTPUT INDIRECT INDEX *
25 UTXIIk'IF REQjREL.RQ.X&.RLN(I)'EL'

215 THEN IF SAT(I.K. 5)& ASATI.IIIf.)9
25 THEN IF K=t
25 THEN I
25 ELSE OLITJX(I.K'-l'+1
25 ELSE IF KWt

25 THEN o
ELSE ')jT-..I(K-l)

25 ELSE IF k=-SIZE.PKrC(I)&%SATiI,K'.5)
215 MEN!t
25 ELSE 0'
216
26 /* DEFINE CALIM FOR EACH PROCESS. .
26 CLAIMII.W.J)= IF PEQREL.RQOrRSLMfII)'PEQ' & t=rIZEPRAC(I)
26 TH.EN PEOREL.RESMIIJ)
26 ELSE CA~ItILXIf.)

27 SAMYKQlII.,J)= IF W=I
27 THEN rAEJJE.CLAIMVI.K.,J)

27 ELSE )-UUE.CLAIM(.k.J)+SLfM REf~-I,~

28 1* TEST VARIABLE FOR CETERMINING TI4E ALLOCATABLE RESOUtRCES. i
28 SAT(I-i"J)=IF JIt
28 THEN (SUNSPEQ(I.WJ)(:=MJtRES(J) 1 lELE.CLAIM(.V.,J)=C))

28ELSE SAT(I.,J-t) &
28 '3UMREQ(,K.JIeKNUM-RES(J) !rJF1IlE.CLAIM(.w.J1:):

1.EQIJATtIlt FOR VARIABLESIN FL LOA '

2Q OL~r.W*-DlriTIJX(I.):t) l~flT(,vVIJJi.-
THEN CI4PTRLBI 'L' !LEFt~JrAJ-t.PPcfID(?&IK'nSMB''

30 /* r(FINE ALLCATIC*J TIME 41

* 30THE-N REOREL.CLCYRN(I):

3! ,INOJIATI .RQ.-OR-SL---OREL.RO-ORRL*
32 IYSviENI IS GOUcWP(EN.PEQRELMSOARM(*)I
33 IVGENT2 13 ciRWSIPIZE.AL .EUE.PrOC~*,m
34 £Y53EN IS rRilJp(I7E.ALX.MuA)):
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N FLOWLHART REPOPT
I NAME % RIPTION EVENT

0? 1 NAMEMORIE NAME PiC.EDiIPE HEADING

76 REQREL FILE OPEN FITLE
56 AASS90 ASSERT I ON

$4 SIItATI.HDFI FIELD IN RECORD SIM.LATI.HDIl TARCGET OFp ASSERTION: AAV9('A
8,3 SIMLLATI.HD1 RECORD IN FTLE SINJILATI WRITE RECORD
A ITERATION FOR ill UNTIL CONSTANT LIMIT',
45 ASS220 ASSERTION
105 INTERIM.NIUrtRES FIELD TAROT OF AS.SERTION: AASS"'O

END ITERATION FOR %!1
104 1NTERIMtRES..UI4I ASSRTIO
12 AASSIIO ASS;ERTION31 AASSIOO
t, SII!LATI.HOF2 FIELDI IN RECORD: SIMULATI.Hrd2 TARI3ET OF ASSERTrIN: SIO

85 SIMLATI.HD2 RECORD IN FILE SINJLATI WRITE ~GR
-8HO S IMLATI. D3 FIE-D IN RECORT' PIJLATI.HD3 TARGE-T Gig ASSERTION: AASSIIO
87 REZLAIHD3QORD IN FIL- :-IMULATI WRIfT RECORD7"

87 S~LAIH3ITERATION ;7r- S I TIL Ew -- D,( SPEC IFI1ED

54 AASS5O ASSERTION
106 END. REOREL.MSOP~m SPECIAL NAME TARGET O3F ASSERTION: AWSV.
77 REDREL. I'SGRM RECORD IN FILE REQREL READ RECOnRD
7CR RECREL.PROCAII FIatD IN RECORD REQPEL. MSGrRM
-' AASS130 ASSERTION

*91 SIMULATI.PROCJIDN FIELED IN RECORD SII4IATI.EVENT TARGjET OF AS!;ERTION: 4AA%1 30t
79 RE.E.9FIELD IN RECORD REOREL.M1SGR4

REQRELSS31 &O(RAR ASSERTION
93 SI~tLATI.PO-ORYRL FIELD IN RECORD SIMlJLATI.EVENT TARGET OFg ASSERTION: AASZ.3t1)

44 PAS2 10ASSERT ION
107 SIZE.WJELJEPRCSEILNM TApRFT X A" ;5521)

0) _ ITRATION FOR 112 lUNTIL SIXE.'( S;PECIFIE
47 AASKS44 ASSERTION
7(3 %ORIJ. 1N-1 FIELD IN RECORD QNJ1E.RRQ&J3 TAR%3F3i OF ASSRTII)N A&53260
46 AASS23O AS;SERTION
69 WJEUE.PROC..ID FIELD IN RECORD QI.EIIE.PA lCrQ TARGET OF ASSERTION: AASS23O

END ITERATION FARi 512
68) REO.REL. CLOCKRN FIELD IN RECORD REORPEL.MSJRM
41 AASS150 ASSERTION

V IUT.COKN FIELD IN RECORD SINIJLATI.EVE-NT TARGET OF ASSERTION: AAS;t'i
97O MLT.C rR ITERATION FAR f2, JNTi cttTANT ;I4MT:

81 EQREL.RESN FIELD IN RECORD REQREL.mSORm
40 AASSl44) ASSERTION ERT-
95 SINALATI.R.ESM FIELD IN RECORD SIMLATI.EVENT T~r(.E O F ASERiN: AASS14O

O TERATION FR £12 !jNTIL .::I:Ei --P FIF'F
49 AASS26O ASSERTION
7*3 QUEUE. CLA IM FIELD IN RECORD IJEUE.PRCL TARGET OF ASSERTION: A4552&)t
50 AA552,7( ASSERTION

Q4UEU0.E. SUPLREQ FIELD IN RECORD QUEUE. PROC-S TARGET OF ASS;ERTION: AA55270
51*S2 ASSERTION
75. QLUJE.SAT FIELD IN RECORD QUTERC APC.ET %1F AERTIJN: AASS2SOl
72 OUEUE. RES GjRkP IN RECORD 0QUEUE. PR(CO

END ITERATION POR SI?
END, ITERATION FOR £12

O TERATION FORI 512 UNTIl :7"Sr crI -
A8 AASS25O ASSERTION 21. .EIFE

71 JEE.UTIXFIELOJ 'N RECORD QUEUE. PPOC-0 TARI3ET OF ASSERTION: AASS2SO

5 3 AASS300 SETn
52 AAS200 ASS7RTIN
68 QUEUE. PROC GROUP IN RECORD t'IJBE. PROU)1

END ITERATION FOR 911

AASS7(O ASSERTIONJ
1' 8 SIEALCMG SPECIAL NA4ME TARGE OF ASS1ERTION: AASSYO7(

ITEiATION M'OR 1f2 IUNTIL SIE'SEIF IED
61 ALLOC. CLOCVA FIELD IN RECORD ALLOC.MSOA TAGT~AETO:A,-)Ia
43 AASS I -') ASSERTITON-
103 SINJLATI.CLOCVA FIELD TN RECOGRD cINI.iLTI.EVFNT TAROET :,P A3SER;TION: 44-;l 1

67



-O ALLOC. PROC-1D) FIELD TN RECORD ALLCC.NSGA TARGET 'A:Fr1:c:'
ai 2. AA$-s I K* ASSERTITLON

IOl SIMttATI.PROCJIDA FIELD IN RECORD SINULIATT.EVENT TARGET !QF 'SFPRTmrN: A

59 ALLOC.MSG'A RECORD IN FILE ALLOC WRITE ;ECO-,P
:'4 AASSI2OAB ASSERTION
100 SIMt.LATI.FILLER5 FIELD TN RECORD SIJLATT.EVENT TARGET ri; ASSERTION:ASIY4
33 AASql2O ASSERWION

02 SIMULATI.FILLER6 FILat IN RECORD SIMUI ATI.EVENT TARGET OF A'SSERTION: A43312')
q SIHULATI.ALOCATI GROUJP TN RECORD SIPIJLATT. EVE-NT

END ITERATION F(R it:
5A AL.LOC.MSCIAS GROUiP IN FILE ALLOC
-s QLEUE. PROC-0 RECOjRD IN FILE CIJUE WRITE RECOR9D

* AAS-l2AF ASSERTION
~'; SINULATI.FTLLER1 FiELD TN RECORD S!MLLATI.EVE-NT TARGET OF ASSERTION : Ccf
.7 AASS 2OAE ASSERTION

'. SIM1LATI. FILLER2' FIELD TN RECORD SIMIJ1!ATTI. EVENT TA~rGET-I -%EFTrIcaN: A;t

31'JLAS TLLK I N REOR INiJLATT.EVENT TARGETl iW 4SET'rN: -
AASS1 20ACASE~O-'' SIMUILAT!.FILLERA FIELD TN RECORD SIJLAT.VEN AfW :r;?5F :

* ,INUILATT.FECiJEST GROUIP IN RECARJPt 'HI~LATT.EVENT
8~SIILAT.EVE-NT' RECORD TN FlILE SIMIAT, WRITE PECORD,

END ITERATION FRri il1
110 $YS'GEN I G ROJP
t11 SYSGEN2 GROUP
12 SYSGEN3 GROUP

5 7 4LL-OC FILE CLOSE; FILE
.4'JEUE F:ILE COE:L
-.IMIJLATI FILE CLSE FILE

ENDl
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Pt.!!I PRCGrlAM

R: PRIYEDIRE OPTIONS(MAINi:
flCL REORELS RECORD1 SE t INPUT:

J'L EIISTSREORELS BIT(t) INIT('t'B'u:
tnt. ENDFILEfREQRELS BITe!) INIT('0'B):
rTL RE'REL-S CHAR(19) VARYING INIT'"'1:
IftL RE' tELINDY FIXED BIN:
nLSIMILATIHISFVRTj

IMU1 TIDLCC BIT) 1000) BASEDIADIDRCIMILATIDL-U.Fe
rirt. I K9'tATIYILINDX FINED BIN:
TIC IMULATTAD2S7 C14ARC12S) VARYING:,
RCL '-IMILATI-HDfl,;- fS F Q' CIA )!
D-1 'L!PATIj~l SCIT(I(x)0) PASflDDCiltTJ2..fe

rlQ ,L tUATIADVIs 14AR' 125) VARYING:
DCL SIMU2LATL-H[Qi?.&F CHAR! 125):
YL S INJLA6. TI-HDSSC- BIT! 1000)BAEADR(ILAH3S:
~jTL SIMLATL-HD&.INDX FINED BIN;
CLRE'RELNMSGRM-S CHAR! I191 VARYING:K DCL FE REL-MS6RPIN0X FIXED BIN:

rj( 1. ALLOCCJSGA-S CHAR (201 VARYING:i
PhL ALt.'XMAASS CHAR2O:))
DICL iuLLOCJIMSOA-SC B!T(1601 BASED (ADDR (ALLCMGAScfl:
DCL AL~LC-%AANDX FIXED BIN:
DCL IEIJEROCSO.S CHAR (2574) VARYING:.
DCL (M.ELEROLO0S-F CHAR) 274):
rsJ. OIEIPRCC'LS BIT! 2O5,2) RASED(ADDR(tUEJROCILL 1-F):
TCL QLUESPROJC.QANDXY FINED BIN:'
rnet. S1WULATIIVYENT-S CHAR!19 1) VAAYIN7t
nCL S)IMttATL-EVENTSS CHAR1911):
DICL $IMJLATISEVENT-SC BITt 15288) BASED(ADDR(SflWLATEVNTSSW:)
PCL SINLLATL-EVENT-INDX FIXED BIN:
ZuCL ItQ1UUPROC-AD)2) FIXED BIN:
CALL SINITWIN(SU-QIEJEIPRtC1D,2):.
FICL *t-QEJJESSAT(2)) FIXED BIN;
CALL 6£INI TWIN (SWS$JA- EESAT. 2):
rDCL $NS&LE$CLAINU!) FIXED BIN:
CAL INITWlIN(WLEUE$CLAIM,'2):

rfjL ALLCCT RECORD SECJL CdJTPIJT:
DCL $FSTALLCCT BIT)1) IN!T('l'):
rct. OUELET RECORE' SEPL OUTPU'JT
T)CL *F371)UEJE' BITHl) INIT)'1'B):
teL SIMLATIT RECORD SEL CfT'IT
UCL SFSTSIMJLATIT BIT)!) INITC'1')t
DCfl- $EYPR-ftF CHAR!270) VAR:
riCt. ERPrJRF FILE RECORD OUTPUT:
DCL ERRORF IT BITU) STATIC INIT)'1)z
D-CL 5M:Trctf(20) BIT)!):
FCL $ERROR BIT'!) INITkUo.B):
Orl $TMP.YAL FLOAT BIN;
T'. )IRD-LP't LABEL:

1 ALLOW>
2 MSOAS,

4 PROCAO0(9) CHAR) 1W.
4 CLOCVA(99'
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DECLARE

CUEUEF

d PRO DQ111 PAQ

4 IN fIXO* .l PIi'',i9/,
4 OURE C ' P C' '

9 LAIMC2,99-5) FIr'.
5 UIj-REQ(99) PlC'9'.

5 SATQZ,01 51 SITM;
DECLARE

I REiOFL,
2 MCIR",

FpiROCIfl PW'Q'.
3R P9-R-RL. CHAPU:'.

CLOC*'RM PIT, :Qlcr999c'.,

-IM.LATI,
HD I
*HPFI CHARt125),

2HD2.
W ~DF2 I:.AR(125).

* 4 EVENT,
I qEDLI~T.

'PCTDM qiAR4).
4 FTLLERI CWR(I).
4 RM.IR..PL CHAR(3).
4 FILER" CHARM1.
4 RESMIRP PTC191.
4 FILLER3 CHAR(1l.
4 CLOCLM PIC-'8(12)0'.
4 FILLER4 CHAR(2).

3 ALLLOCATI .
4 CILLER (99) CHAR(Ii.
4 FMOC.*IEA(90) CHARM4.
4 PILLE%69 CHAR(!).
4 CLOCKA(f9l' PIC'9(12)9'*

DECLW~E
INTERIM.

2 RES-LIMI.
3. NMRES(5) PIC"',
2 MYSEN1,
3 ENDSREQELMSGRMQ&) BIT'1)

SY;AEN2,
3 SIZESQLUtIEPROC(2P) FIXED BIN

2 SYSGEN3,
*~ ; :I7E$ALLC'.)4SGA FIXED BIN

ICL $11 FIXED BIN%
XCL $12 FIXED BIN;
TL. IT*" FIXED BIN:
1(L tTRL!E,3EI.ECTEp) AIM)t INIT(I'1RI!
rr, (FALSENOSELENOT-SELECTED) ?ITfP INITC011,
DCL SIJBSTR 3IJILTIN,
DCL DATE YAJLTIN:
LEFTJ: PRrJC(K) PETURNS(CHAR(IO) VAR),, /* ISTARTI *

* '~I CONVERT A NUMBER INTO A VARIABLE LEGTH 'STRING *
DfL (k,.j) FIXED BIN:
PCL 7T CIAR201 VAR;
dci answer char'I')) var:
.j=YEP!FVY*5T,' r0''
IF J=O THEN ST='O':

ELSE ST--%lBSTPST.J:

END LEFTJ; $~ END$ *



I1S4
sflTATE: PPOCEDUREWINVEC,LEm': j4 4;;T.ART;

rl INJ.EC'l F:IXED BIN:
OD.L 'I.LEN.TEMP) FIXED BIN!

%r1 2 TA LEN:
WIbLVEi I-W)WINYECiI'

END:
A4tLVEC( LEN)=TENP:

END SROTATE: It SENDS$*
INITWIN: PRtCEDUJRE(WINYVECLEN)! /* ISTARTS f/
DCL WIILVEC(*) FIXED BIN:
rxt. (I,LEN) FIXED BIN;
DO0 I~t TO LEN:
CNn:

Pi SINTTN: /* SENDS 4

CHPTRLB: PRCC(NAME) REUN(C4R3'yP ITrS,
rlCL NAME CHAR(.l:
oCl. RE,-tLT CHAR( 32) VAR,
flOL :I.LEN' FIXELD BIN:
TF NAME--' THEN RETURN'- '
LEN=LENGTH(NAME1:
/.TWI' PROCEDURE CHOPS OFF THE TRAILING BLANWS iCRTRLr_4 OF P TYF-it
LENGTH NAME' AND RETURNS A VARIABLE LENGTH LiNE*/
T10 h=LEN TO I BY -I WHILE(SdJBSTR(NAME.I.I'~'/'
END:

* RSULT=3U BSTR (NAME, I .I)
RETURN(CRESULT)?
ENP cfPTRB; 1*SENDS *
!.,N ENDFILE(REORELS) BEGIN:
Ioto lSR 1 :END:
ON U.NEEFINEUFILE(ERRORF) ERRORF.BIT:-'WB;

* DECLARE PLI$-XNVERR GLOBALREF VALUE FIXED BIN(.31l
rlECLARE RMSS..RLK GLOBALPEF VALUIE FIXED BtW3'.-
ON ERROR BEGIN:
'F OM:*ODEU=RMSSAVL THEN ";OTO SRILLPS:
TF N(tERROR) THEN CALL RESIGNALU:-
'F ONCODE0=PLIS-XNVERP THEN DO:
SERROR='Y0/B:

7 T~F ERPORF-BIT THEN WRITE FILEIERRORFi FROM S$ERRORBUF)
END*

ELSE CALL RESIGNALO:
END:

MA ILBOXANAME='REORELSYMBX':
MAN-LENGjTHI9'
3TSSVALCE=$ySCREMBX (PERMANENT. CHANNIEL, MAY -LENGTH,. PROlTMAi:k. MAI LBOX )JAMF I:

LNREOREL.S: 'REDRlS':
EtJV-NAME-
CTCSVALLE=SYSSTmILJU3I LNSREORELS. LLENOTH. EQW)NAME,., (:
if 'stslsujccegs then Puit skip 115t('trarns'atlor errosr'):

* OPEN FILE(REQRELS) INPUT TITLE(EQVNAME):
SSU9STR (EQ'LNANE, I. LLENGyTH):

5)TI SVALIJEr VYSSASSIGN CSYS. CHANNEL, .

T'. - 7 ~lcll.jgyjc5 TWEN EXIST_.REQRELS'YB;
.1ILAIHF= RE91-EST ALLKIATION'?

SIMULATI_4DLINDX=I:
SUBTR( ,IMUILATL-HDLSS;-,SIMiLATL.HDL-INDX,1I25)=SIMIULATI.HDtFI
SIMJLATL-HDI-INDX-SDIMJLATL-HDL-INDX+129r5
SIMJLATLHDI -S-SUBSTP(SIM.:LATLHMDLS.F, .tl,.IPMLATHDlINDlX-1l:
WRITE FILEmqIMHLATJT) FROM (SIMULATTIDLS:
1)1) III =I TO 9:

TNTERIM.JIIMRE,(IIlzt:

SIMIJlLATI.HDF2=''PID R/L RESR: TIME PADr TIME PJD
* f'iME P ID TIME7?



.:,~~ 1e5 - -1

;I!USTR( tMILT1YWDI..F US1~LATLHD2 IND. 12 Mli!LATI.HDF2
3MIjLATI-H1D2. INDXSIM.ATL-HD^ NDX+U2

'I MLAT I -HD2,SUE8$R(ll3TY2Y $LLT iD NE'-:
~4RITE PILE(S1.1)LAT!T) FROM (~4JALD$

*~~ ~ _USP~LTH3SFSIMLATI-D3-IND)(01 I31LATI.HDF?

WR17E FIILEi'IMJLAT1T) FROM (SIMI.tATI-HD3.3):

;NOLT-[iNE ( I1 11,
D)O WHILE-$NOT-DOiJE(Il:)

WREDELrM 2) =CU4TE)=' 84023'
S;D-;ECRELS:

PEAD FILE(REGRELS) INTO (REMREL-MSCJRM'):
REQREL-mRGRM..INO1'X
IEARB.=E-PLM(R-;
RECREL-~CRM-S=REQREL-MSOiRM-LEcopy (I '.l01'.
SEROR 'P :
IINSPEC I REQREL. PROC.. DM 1=LWJSPC 1 SIJBSTR(REQREaMCiRM.S, REQR E.GW~RMINDX.l I'
REQREL. RXC.IDM =REQREL.PROC-JDM
IF $ERROIR THEN $ERROR= OIP
REgREL-ISI3F$lINDX=REQrELMSGRMLINDX~ 1

a ;TMLATI.PRCJ-DH=REQREL.PRrOC-IDM,

PEC'REL. PQ-OR.RL-qL[BSTR (RECRELMSORMS. REC#EL-KI.. N' .
RECRE-M9GRM. INDXZREQREL-HSCRM.INDX+3 3R-NX3
1:'IMULI~t. RtLOP-SL=REJ.REL. R(@OR-RI;
IF gl1=1 THEN SIZE$QIEE-PROC'2)=1:
ELSE IF PEOREL.RULC'RRL='REL' THEN SIZE1f)JEU EPRC(2)=SIZEIUEIJLPRCC( )-I:
ELSE $-IZE$QLJEJROC(2)SIZE$QUEIUE.YRC(1)+l:
DO$12 1l TO -3IZE*9'JElJE-PROC(2)'
IF REOREL.RQ-OR-RL='REQ' TH4EN QJLEIJ(1)12

ULSE I F REQREL PROC I P"-- EUE. PROCJID ($W-GEIE$PROC ID I1 12) TH4EN I F
$12=1 THEN @JIEIE.INJX($I2)=1;

'LS3E C IEE.INjX(gl2)=,)IJEUE.1Njx(1I2-t)+'
ELSE IF $12=1 THEN QIJEUE.!N1X1112)=2'
ELSE 1).EIE.INJX($12)=eCJELE.NY(12-12
7F REOREL. RILO)R-RVRE'&$2SIZEQIJEIE-PRO,( 21 THEN

'LEjE rOCJID(IW-.QL!EUE$PPOC-D( 2). $12)=REOREL.PfDN
ELIE OLIELE. PROC-ID($W-LIELIESPROCD2).11:

rLUE'ROCIDf1ILQIJEUEPROU:D(l) .r.E!E. IN-1X 312))1
END:.

IJNSPEC (REQREL. CLCKRM )=IJNPEC( S)JBSTR( REOiREL-M6G'FRM-S. REC'REL..MORM.INI'a.,::l)'
RE@1REL. CLOr',KRM =RE@RL. CLCKRM
IF sERR THEN tERP((P=R&B
P'E MEL -MSIIRM- I NOY -REirEL-MSSGRM- INP X+ t

* 3~'IMJLATI . rLOCri RM-REr IREL. CLCKRtI
fA 412 =t TO F

IERRrOR:
I!??EPEC (PEr'REL. RESM) kIJPEC (SIJBSTR PEOELyS5rP4S. P E9PEL-Mt;(,PmM. TNfsr.II
RE9PEL.R.EcM = AEflREL.RE$I4
IF SEROfR THENI SERRnR'v
FREL-lcPM- D=ERLMciMID+
$-IMLLTI .F-;(SIL)REWRL.RESM'

*~n 113 =t TOj SIZESWEIJE..RCKQ21

'.ELSE. rtJULAS~IMJEU~ ESCAIM(2). 1. 11:RE)R-EL EM: s-C-~ECLT41

.;IEE IN I1,r1

I~L; 1= THFN QULE ,J-E 13 1II 4LE LI t-VELI (21

* nILI~UE. uN PEr@(ID~.1)
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;F 11"=t THEN %iEUE.AT($WfiUjE5Al2.p5T ifUEF$MSEt312
NER I M.NUMRES(112) I CRELIE.CLA IMfI SW-QJEUESCLA IM2 .S3,12

ELE EUE. S3AT! SWSUELIESSAT(2l1 13. St1)JXEUE. :AT(WIEEST~S3

r50 SI? =1 TO S;I!ESQLEUEPROC(2):
~FRE';'REL.R@R'LcRSL='REL' THEN IF QUEUE. SAT ( iWS4JESESAT 1 21. $12.9 ciL'

C4EUE.S T(%LQIJEI.ESAT(),OUEIE.INlY(fl2). THEN IF 411 THEN
OIEJ.UT XY($12) =t;

ELSE CJEL.CMTJY(512):CIOJEUE.CtLIT..IX(112 -1 1+1
ELSE IF t12=1 THEN QJEIE.OUTJ(2)!

RE O UTTE uIj.1)=j-

TWN ALLWC rLOCKA(OIJEUE. OUT-!Y ($12 1 )=PE(OREL. CLrfV;m-

I;F ILEE OUTI ($2)t 51>&U UE.LIX($2"QEUE. OULIX ' 112-t
THEN ALL IC.PROLCID(@UELIE.OU4T.IX(112:, )=CIPTRLBU'LC0
LEFT. QUEUE. PvrOCAD($WiLQELIEWP~ROCJD(*). 1 1 ,3Si'l

END:
a ; ZESCI(I EEPRO (,2)%>0 THEN SIZE$ALLX)-mjCSA--)ELIE. CVT-A 'S-I ZEQJEIJE-Fhri 2,).

1 'IZEALLOCMSGA=0-
ruc ST" -t= TA 3MZEBALLOC-1ISOA:

I 'JLAT I LOY (%I'.)SII =ALLOC.CL~vYAi11I2):
IIl LAT o~r~12 S TR(ALLCrPR rJD(I2).6 )

ALr C.MSGAINDXzL: 
, )

IIBSTR(ALLCMSGjA-SY.ALLOCYSGqAINDIX.11 )=ALLOIC.PROCAED( 12'
lLL',C- Msr.CA-INDX-ALLOCJ4SGAJNDX4LI
lB TRIALLAC-MSOA..SC. ALLOC-J4SGAIND*8-7, Q*.9 )=IJNSPEC ALL-C.CL'CCVA (

AUJC( N-WfA-INDX=ALLOL-MSGA..INDX+9 ,
ALLUC-t'WCA-~SUSBSTR(ALLOrC.SA..S.F. I ,ALLOCJIS&.(INDX-1):

TF T.;SU1CFSS THEN DO:
PU'r ~VP II' Ti'**WARNING: NO CHANNEL ASSIGNED TO ALLOCT'):
PU T C;IP ICT('* MESSAGE DEPOSITED INTO ALLOCT.DThT-':
WRITE FILEIALLOCT) FROM (ALLOCJISC&AS):

END
a -E DO.

STSS$VALLIE-sqYSIOIO( I,CHANNEL. IOL$WRI TEVBLK+IOSMJJ~wO MR3ATS.
A~flR(ALLOC_( MASF) LENGTH(ALLOCJSAS) .... %
IF OTSISIECESS THEN P137 SKIP LISTL'WRITE 910 Ul'tiYESSFLt':
ST)SVALIIE YrSSc#JTCHR.III 2

;mII- LATI.FILLER5(112)='
* IMUtAT1 FILLER4(112)'/ ft

'ira $12 =I TO '.IZE$QIJEUE..PRO(2):
'-U rR (eiIEPROQQ),SC. C*EUEYPROLQJ-NEIXFl-7. I'S =

I dIEHE-PRffw A INDY:OjUELtEPROr..QJINDY+1
IJBSTR (@U El E-PROCjXSC, OIJEIEYPROQ'-INDfS-7. 9*R) =I INSPF 'ECU~IE~E. II12

* iIFLIFPRr.- INDiX=GAELLEPROrQJNDX+9
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ll --TR ))JEUE..PROC _CS - tIEUIE.ROQQ -0 NEIt-7 I*pdNPCQJLE T 1

1 1 =1 r

IA:SPEC (X4EUE. CLAIMN(S_USAJEfLEAIM(2 21 $12, $13)
C EIER tND iUEUIEJ'RCS -INDX+ '

,'ICDS74g (0RE-PRfr )F.QU'ElEYROC._.QJINOWX*8-7. t*8:)='JNSPEC(4jJESIJMlE', $I,'

IIN'3PEfl "IIEIIEAT(SW- &IEUIESSATC2 ).$12 ..1f

A1l:TEiIE TIn 4 l IN(X AEI PAlOjNiX+
- E M _

"iMILAT,. FTLLEP3
S?1MIII -ATT! ILLE 4=

hU 7IIAT EVENTINUX I,
I8,B'TPSIMILATI EVENT-C F S11.tLATLVENT.JNDX,4)$P'!~JLATI.PROC-JOM

D ImIILATI-EVIENT-INDiX SIMIJLATL-EVENTJNB4D+
'dIBS;TR( :.l~LTL-EVENT-.-FSINLtATL.EVENT-INI3X I )=31MILATI.FILLERI

1 ML,T IVENTjNDIX=SIMlLATL-EVENT-jNDX+l

UI'7(CMJLAT IEVENT DXSI IM LIEVENTIX.3
l~l T~f~ lLTEET..IjTt E N1NX. I =$1MlJLAT!A1LLER_2

"?TP(CTJlL AT! £ VENTWIIIJATLV EINX.1 DY

1j$TRI$ILATLEEVENT3.IILTLEETNX87 '

UNSPEC$IMIJLAT!.RE$M{612l) :

IR'3,IJLA UET L.EVENSY,$LAT EVENT NDI)=I JAIF!L1

J-l ILSTIMT ENT NT S>SILATIEVENTINDX *87 38=JNPCStLTT.LCVM

IILT EV;N1 NDX SIMLAT EVENT -XI3 :8-

SURT .1MllAT EVENT-S.F , S1MLATLEVENT-I NDX,2k SIMIJLAT!. F1ILLER4
EItI UAT 1EVENT-JNIX=SIMJLATL-EVENT-ANPX+2 t
f'n %12 -tTO ',IZE$ALLO-MSGA:

HETu fILTEYN S.F$IMAIATEVENT-INE'X I )=S1MULAT.F1LLEP5($12')
* 'i"-LMTI-EVFNTJINDXrB:TMtJLATL-EVENTAINDX+l
,)tIBSTP( S1MULATL.EVENT-S-.F.IMtATL-EVENL-INDX,L)=SzIMlJLATI.PPOQIDEA($1y
'MI.ILA71-EVENT-ANX=SIMLATEVENT-INIY+4
ZUSr(llLT -EET I X1r=1M-lLAT1.F1LLEP6($!2)I
I" iITEJENL.INDXS IMILATI-.EVENT-JNDX+l

* $UBS'TR 'IM MJAT-_EENT SC. SMIJLAT I -EVENT- INDX.8-7. 13*8 I=

1. .L T EVENT-1NDX--SIM~AATL-EVENT-ANOX+tI
END:

t7MIILATT EVENTS =JBCJR(SIM-LATI-EVENT- -r. I,SIMILATLEVENT-ANDX-l':
4 RTTE FILE($I'IILATIT) FROM (Slt'fJLATL.-EVENTS 1:
T; END4PEORELSRrn2) THEN $NOTDONEI I j()'B:
,IZESIUEUL-PROC(l) $1 ZE$r)UEUEPRIC( 2Q):

END$REQRELA'CUFW t) ENE'$EORELNSGPW 2):
:ALL SPOTATESWSCIJELIE$PPOCAID,2):

(Al SFOiTATE'3W.0I.EIE$SAT. 2):
CLL ;::TATE('SwCJEIE$OLM, 2):

'thrlF -_iLEiALLOCT':
CLOSE ;F1LE ')EUET';,
!1riCE PF:LE P 3S1MIJLAT IT I
RETIFN*
Eill P'



* LISTING OF SPECIFICATION

t CONFIGURATION: R:

2 M: PL.P,PPLF5 --> F: REC'REL (OR6i:MAILl
N: M.fONITOR -~F: ALLCWT (ORG:PriST'

4 -F:ALLOCIS 1,PG:MAIL). 4LLX2S7 (O09G: MAIL1 L f 4LC C flC,: MAI1!
ALLOC4S (ORG:AIL'. ALLOOSS O1RG:MAILI:

* F: 4LLOC'S -* P2!
F: ALLOF -: p:
F: ALLCI4S -> M: P4:

o PF ALLCSS5 m : Or,

4 CONFriGURATION REPOiRT MSC-C REPORT

NODE- NAME TYPF

NAME !23456709j -------
WNt4TOR NJIL

MOD~E(4 * ALXTFILE
i MNINTOR ALLOISp5 'LE

pivPI MRI2P1v WUREL FLV.2 v PL~' ILE

5P4 v gj LA$FIL

ALY; FILE
FILE(S) *L)A N:L

LOTAlALLOCr FILE
' AICj V MDL

*ALLCIs
SALUr'" v

IALLOC4 v

I- QErP EL !v

-- MODULE &-PEF --

NMME: MINt4T0P

PEOPEL V'lT RTI 4~ LLT V ITY

MO T -A
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Mlt: ~I

p. WNJNYMS q RI TgARfET S NrC. APTER PARi: I

41LLOCIS 'VIR.TUAL REtCIREL i VIRTUAL 9
P4

P..

L P 2 : P

SORCENlf TAW5ET WN ~~RP4Pi:

AfLLISc 'VIRTUAL FEOREL ':VIRTiUAL

'4nL: Pi 0.4ITO

P_"FE: V,

PYWM3NYM SOURCE TARGiET SYM;. AFTER PARt: I

ALLOV3S /VIRTU.AL REOREL 'VIRTUAL PS
P4

Pt

WAN I TtR
MDL:P4

P-NAME: PA4

S;YNONYMS C riJPCE TAR,3r SYNC. AFTER PA~it: I

ALLOC4S 'VIRTUAL REREL 'VIRTUAL PC;
P4

P2

MDL: p, MONITOR

P-NAWE: P5

SYNONYMS SO0URCE TARGjET SYNC. AFTER PR*: I

ALLOC59S 'VIPTUAL REOREL /VIPTIJAL P97
P4~

PILE: ALLOCISS

(COMPATIBILITY RECIIIPEDI
SYNONYMS PRODUCER CNSUMBER ORGiAN! ZATIOiN REC SIZ AF t 'AI:

ALLOiCT F!MAIL/VIRTU.AL _16," PC;

ZN
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FILE: ALLOC2S1
P NAME: &LLOC2S3

(i))MPATIBILITY REWUIRED)
SYNONYMS PROTh)ER CONSIJMBER ORGANIZATION REC 17P PAP::

AILLiCT P2 MAIL/VITiJAL 300 P9;
P4

Pt

----- ---- MONITORP
FILE: ALL'C05

P.NAME: ALIJK,

(COMPATIBILITY REWUIRED)
-;NOANYMS PRONUCER CONSUMBER ORGAN17ATION PEC S TZE PAPt:

ALLOCT P,? MAIL VIRTIJAL 300CI C-

PA

Pt

;7TLE: Al-LOCAS

[COMPATIBILITY REWUIRED)
SYNONYMS PRODUCER CONSUMBER ORAIZATiO- REC SIZE PARA: I

ALLOCT P4 MAIL/VIRTUJAL 3F0 5
P4

P3

FILE: AI±OCStNTP
P-NAME: ALLOCS

(COMPATIPILITY REQUIRED~)
NOMS PRODUCER CONSJMBER OROANIZATION REC. ---,7r PAR#: I

ALLOCT P5 MAIL/VIRTUJAL 30 P5
PA

FILE: ALLOCT MlIO
PANAME: ALLACT

4 (COMPATIBILITY REQUIRED)
YNNYMS PRODUCER CONSMBER ORQANI17ATIOiN E S;IZE PARik:I

MONITOR ALLOCIS POST 'VIRTUJAL 300
ALLOC2SP
ALLOSP-
ALLONCS -
ALLOC9 Pt I

* MI:IN!tTOr]



PN AMF: RECREL
r iCONMPATIBILITY REQUIRED)

SYNI:NYMS PRODUCER CON9J.MBER ORGANIZATION PEC SIZE PAWRt

P! MONITOR MAILIVIRTJAL 30 ' P5
P;, P4

Pi
F4 V,

MONITCiR

* CROISS RFERENCE REPORT4

NIAOE Mm/F TYPE REP-NAME PNSICAL NAME INFORMATION WiIEPE TT TV r-CFNn

MONITOR M MDL MONITOiR MONITOR
r, M MEtL P! pt 62

P2M Mct P2 !.
P3. MPL P3 P3 5P4 M M[It PA4 P4 0PC; M mroL P5 P15

ALLOC IS F MARL ALLCCIS ALLOCIS6
4LLOCIS F: MAIL ALLCt 2$ ALLOC2$S
ALLOC3S F: MAIL ALLOC3S ALLOC3S "4ALLOC4S P MAIL ALLOC.4S ALLOC4S
ALLCE5S F MAIL ALLOC5S ALLOCS5S 10^5ALLOCT F: POST ALLCCT ALLOCT 4EREL F MAIL REGREL REGREt.

*PAR. COIMPONENT REPOPQT*

+ Tbq PAR. COMSg +

PAR. COMPI NODE NMNE TYPE ACTION PHYSICAL NAMF

I MONITOR MDL SUBMIT ONTri
ALLO'T FILE ALLCT~
ROREL FILE --- PIQRE'
ALLCS FILE ALLCIXIS

AILCC"lsFILE - - ALLXC2S
A L CIC 3 F IL E -- - - A L L C 3 5

AEL"' 4 FILE ---- ALL-car
ALL5' ) FTLE ---- ALL I,

141M1L SUBMIT P21

P mD SUBMIT PS

P4 K' L P r1a c.*onT Peu 4 reMt

PAR.
CO1mpt!l
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1. he naln *-!CL arsr~'RR.cMi

IpI-I PR

$IIN R
ISUDNIT iNAM4rI4ONTTAR M)NITIR
*9MIT/NANE=-PI P!*
SUBJIT/NAME=P2. P2

SSUBMITNAMEF3P F?
5SIJ8MIT/Nj*4E=PA IDA

V' END OF ONE PPCM

The *sfL Prngrams qr each mndila

* CL Program inr MCiNITciR WMNITR.iCM, .Jf Program ior r ii...,4

SDEFINE PFCPEL r4OREL-MBX SOEFINE ALLC(3YSA &LC3JIE4MY
SRUIN MONITORp $DEFINE REPEL ERELY--'MBX
ICIEASS REPREL SPU N P3

SDESS ALL03S
*JCL Program ior PI iPl.COM) IPEAS PEOREL

SWiFINE ALLOCIS ALLOCISPY * Aft Program ior PA4*tM
IDEFINE REOREL RFQPEL-MBY
SPU-N Pt SOFINE ALLOC4S ALLOC4S.MBY
IDEASS ALLOCIS IDEFINE REPREL PEL-MjV
IDEASS REOREL SRLJ PA

SE'EASS ALLOr"AS -

JCLI Program ior' P2 fP2.CONI WDASS PEPRE.

$DEFINE ALLTOCZ2S ALL'X2S-ARY *jrf Prgjram #or P9i (F5l.17M)
IDEFINE REPEL PEQRELID
SRIJN P2 SDEFIPE ALLC~CSI.:rSx

SE'EASS ALLOC2S $DEFINE REOREL REPFLYFIV
IrJEASS REOIREL SRI*4 Pv;

IEASS' ALLEC9S
IDEASS REQREL

3. Th~e mailbox creation PL/I Program (P.PI)

CREMBX:PPOC OPTIONS(MAIN) RE"JRNS(FIVE-Li BIN.m: )
%INCLUDiE SYS$CREMBX:

ZICUESVSSASSIGN:
*INC+LVDE SSTSDEF:
rL MBXANAME CHARI 15 VAIR!
1jCt PERMANENT FIXED 81N31 STATIC iNIT11),

rHAP*IEL 'iYED ~Nti
MAXJ.ENCIH FIXED) BINI3I' STATIC.
PROsT2WA k BIT(Ji6 ALIGNED STATIC TIiTr~'c
MAILBOVJJAME S-TATIC CNP(19 yP

MAILBCItNAM4E='ALLO CISYPIV'!
MAY_ EWkTW=.&:
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')VALL E=S. S EM ' PEPMN~rHT CW E.
FA-LNGTHk PFIYKMA9.. . MAIL BO' NiiME;

MA I2Oi)-NAME= ALLCrS 'MBX'
M:AY-'ENGTHW3o

STSSVALIJEZ- S 5'MYCPEPMANENT. CHANJNEL.
MAX LENbTH, PROT-MASK..MAILPr'gwNME;-:

PIAILBOXJJAME= ALL" K -MBX'
MAY 1E*H -300. H .PR

M .L1H .PRTJASK MAILO)-NAMF-i,
M~IL30X..NAME2'Ar[LL4MBX'
MA AENG'WiTHi4= 3006
STE SjVALUErSICPEM8Y iPSP-MANFET. CHANNEL.

MAX -LENflTH, .PRQTMASlC. .MAILBRAyN-, 4F

'~ EN T=3

DEmB:Ki OETH..iMI~ FRTAS.MiLWX PNAME'
MA IItE NAMEPEL M 9X'
:7IVLUF= SYSsICRMXG ERANTCANL

PETURN( STSALI

CHEL NEL:F'Rug. O PTININ5 E!JN)TXD.N(1i
(IN:L'E jT YIXEDX: TAI
*;NCUE YAS IGN:6 AME TAI NTIFO
DLMBXIAME-N SHATIC5 VAR 1)VR

MAILYX PEPMET IXEDLO INAY' SAI I
MALENTH INEIN3)STTC

PRO'TYSk'ES ITHE(16 LINE SVTA TI Ct INIT('FFOO'D4)
MAI.Sv LBOX NAIDMSATC HAR(19'):VR

MAILBOX -NAME='ALLOIS :-,MX '
MAYIEGTrO
TSS,- SSAS~NMAILWIXNJAM. CWANNI...):-I
IF aSTSBC1f.C:ES THEN PUT --KIP IST('PrtR IN DELMBX'
fS" SVALYECSYSGrJELMBX (CHANNEL):

MAX LEcNr~THC)A*
- TSS VALUE:,YS$ASGN CMAILBOX AAME. CHANr....'I
IF lc'57543! CfESS THEN PUT SKIP LIST1'' PO IN DELMBm:
CTSSVAlUErYSDLMB9YirA( E)
MAIL8OX AAME: ALLOC3SYFN':
MAY -LENjTW=lO(I:
3' SVAUIE-'YS$As 'IrINWAILBOXAAM,CANNEL...l
IF ASES'SI E N Pl17 SIP LIST( 'EFRP I DLBX1

STCSYALJ E=CYSSDEL!BX'iCANNEL)

MAY I ENTW R-$.
WL E'ySAcSI;,NiCMAILBOXJAME., CANNEL... '

IF cT4sS1i#rEA THEN PUT -;vI P L IST (''EPqfj I N DELMBY
5T, SYAL E-SSSflFLMBXI CHANNEL
MAILBOX -NAME... H9LL>MB -
MAIYL ENC3H= i: t
- ;SVALLE:SYSASIC,NMA ILBOX..NAME-.CHANNEL...
IF '$TSI5IJCESS THEN PUiT SKITP I:PpcRp IN DELt-''
;TIV1ALNIE:YSIL CHANNEL C!E
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A.4 SIMULATION REPORT

REOEST ALLOCATION

PtD RIL RESRC TIME P.ID TIME PID TIME RID TIME

2 RE@ 01100 000015461434 2 000015461434
REQ 110 00 0 015462017
REQ 11000 066015462074

5 RE! 10001 000015463088
%(' 00011 000015463198
REL 11100 0000154'%548 1 0(W015463548 . 0.0..t46..,3
REQ 01100 00001546549f

* REL 1100 0015463611 5 '0001'5463611
1 REI 110WO (KKK15453612
- REL 00110 000 15463615 2 000015463615

REQ *110 0000 153617 ~ 001433
5 PEL 10001 000015463639 4 fAK 1463639
5 RE 100G 1 NC 001546640

REL 01100 000015463662 I 00015463662
L REQ 0t10 0 0000154664

4 REL 00011 000015463686 3 000015463686
4 REQ 00011 000015443687

t RE 11000 0000154370 5 (00019l4637501 REQ I1000 000015463711
S REL (0110 0015463733 2 (0001!463733

? REQ 10 )00001546373f
REL 10001 0 015463757 4 000015463757

5 REQ 10001 L001546375,8
REL 01100 000015463782 I .0015A637r2
REG 01100 000015463784

4 REL 00011 000015463805 3 0(0015463805
4 REO O0011 00001W43807
I REL 11000 000015463829 5 0.00154.829
I RE 1100 (0015463831

. EL 00110 000015463858 2 00001543858
REG 00110 00001546'3860

5 REL t(XOl 00154684 4 O01W5443884
5 REQ 10001 0015463885

REL 01100 (00015.463909 I 0t546309
RE@ 01100 000015463910

4 PEL(M I0 00001.54u3935 3 0 I000153935
4 REQ 0011 0000154336

R.EL II00 00001543958 5 00001543958
I REQ 1O0 000015463959

REL 00110 X015463983 2 0000154 83
REQ 00110 0000154639F4
REL 10001 000015464006 4 000015464006

5 RE@ 10001 (0)001544008
2 REL 01100 00001546430 1 000015:40,1)

REQ 01100 000014I4032
4 REL 000tt O00o154648 0001%4(6
S REQ 00011 (00015464064

! REL I I00 000015444103 5 n0015464103
I REQ 1100 00001 64104
S REL 00110 00001544165 2 00001564165c REQ 00110 ('0015464166
5 REL 10001 000015464207 4 000015464207
5 REQ tO001 000015464209

REL Ot 100 000015444239 I 0 I001 5442394 REL (Ol 000015464311 - (00144311
RE 000 I 000015464312 -

S REL W000 0()15464347 5 000015444347
S REL 9t 10 0000 154643855 REL 10 001 000015464439 4 00154.44, -

4 REL 00011 000015464457

S "" ' " " ' ." . ..



-195-

A2. TH[E COOPERATIVE COMPUTATION EXAMPLE

The example presented in Part I is an extremely simplified one.

The real-life example of the cooperative computation is presented as

the follows.

A2.1 SYSTEM CONFIGURATION

CONFIGURATION: PBE4; 1* PACIFIC BASIN ECONOMETRIC MODEL ~
Ft TSDrJSAS,CTRUSAS1,I1USAS (ORG: MAIL)

-~M: USA
-~F: O2USAT, OlUSAT (ORG: MAIL);

F: TSDJAPANS,CTRJAPANS,IIJAPANS (ORG: MAIL)
-M: JAPAN
-F: O2JAPANT, 01JAPANT (ORG: MAIL);

F: TSDTWNS,CTRWNS,I1TAIWANS (ORG: MAIL)
M : TAIWAN

-F: 02TAIWANT, OlTAIWANT (ORG: MAIL);
6F: TSDPHIL.S, CTRPHILS,I1PFIIS (ORG: MAIL)

-M: PHILIPPI
-F: O2PHILT, OIPHILT (ORG: MAIL);

F: TSDTHAIS,CTRTHIS,IlTHAIS (ORG: MAIL)
-)M: THAIL.AND
-F: O2THAIT, OlT1HAIT (ORG: MAIL);

F: TSDKOREAS,CTRKRA,I1KOREAS (ORG: MAIL)
M : KOREA

-~F: O2KOREAT, OIKOREAT (ORG: MAIL);
F: TSDWRDS, CTRWRDS,

USAS (ORG:MAIL),
JAPS (ORG:MAIL),
KRAS (ORG:MAIL),
TNNS (ORG:MAIL),
PHIS (ORG:MAIL),
TAIS (ORG:MAIL)

-M- WORLD
-F: O2WORLDT, OIWORWDT (ORG: POST);

F: OlWORLDT
-F: IlUSAS,IlJAPANS,IlTArWANS,11PHILiS,11KOREAS,IITHAIS;

S: OlUSAT, USA.S;
S: 0IJAPANT,JAPS;
S: OlTAIWANT,TWNS;
S: OIKOREAT,KRAS;
S : OlPHILT,PHrS;
S: OlTHAIT,TAIS;



- 1 ',-

i3

,. :.

"- -- L1. -- -

'2 *!

[.'.r



A2.2 THIE WORLD MODULE-19 -

MODULtE: WORLD;
SOURCE: LISA, JAP,VKRA, TWN,PHI,.TAI, TDWRD, CTRWRD:
TARG3ET: OIWRLDO2WORLD;

1 LISA FILE CR0 MAIL,
2 IJSARC1:10) RECORD,
4 PROCID FLO (CHAR 10i, 1* MAIL ADDRESS *
4 ;M$2),PX$, X$2L,LIS-APY,LISAY.UjSAR)

ARE FLD 'DEC FLOAT( 15)):

END. UlSARC (TI =T= I MYPD:

1 .0P FILE CR0 MAIL.
'Z JAPSC(iA 10) RECORD.

A PROC -ID FLD (CHAR 10). /* MAIL ADDRESS u
4 (MIt,PXSIX$,JAPPY,-APY.JAPR)

ARE FLU (DEC FLOAT(15)l:

END. JAMPR(T) =TS I MD;

* 1 TWN FILE CIR13 MAIL,
TWNRC'1:1O) RECORD,
4 PROCID FLD (CHAR 10), ft MAIL ADDRESS *1
4 (M$ SS.X$3,TWNPY,TWNY,TJNR)

ARE FLU (DEC FLOAT(M1):

END. T*IRC;T)==SIM-PD:

I KRA FILE OIRG MAIL,
2KRARC(1:10) RECORD.
4 PROUJD FLD (CHAR 10). it MAIL ADDRESS Vf
4 (M$4.PXSA. X$4,KRAPY,KRAY.KRAR)

ARE RLD (DEC FLOATI 15)):

END.KRARC(T)=TZSIMtPD;

1 PHI FILE ;IRi) MAIL,
2 PHIR::u1:10) RECORD,
4 PROCUD FLD (CHAR 10). I. MAIL ADDRESS 4

4 (M$5,PXS5,XS5,PHIPV,PNIYPHIR)
ARE FLU (DEC FLOAT(IS)):

END. PHIRCI T)=Te-SIMD;

1 TAI FILE ORGi MAIL,
* 2 TAIRC(12 10) RECORD.

4 PRtCID FLU (CHAR 10), It MAIL ADDRESS #
4 (M$6,PX%6,X$6,THIPY.THIY.THIR)

ARE RDO (DEC FLOAT( 15)):

END. TAIRCI T)zTrBIMPD:

END. I2R(T)zr=SIMPD:

1I CTRWRD FILE, /9 THE CONTROL FILE *
LR RECO1RD,
3 'cTART-Y.R FLU (PIC '09Q99), It STARTING YEAR OF SIMULATION i

3 LAG FLU (PlC '9 L I LAO) FROM THE STARTING YEAR u
3 SIM-.PD FLU (PIC '09'). 1* S:IMLLATION PERIOiD. *
I I2R RECORD.
3HUH FLU (CHAR31)

* 1 R'1:1It) RECORD. LOC2AL HIS'TORICAL DATABAC;E
HYR CLD H,1AR 4)1.

3 (1, X$22.IX$r",f144,1., 4 ~$66, ALPHA.ETA7 1,BEAh.ETAT:.,?TA4.RrrA
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BETA7A, BETA77, PX$71
ARE FLD (PIC'BB(IO)-QV.47)9'):

I rSORD FILE, /* TIME SERIES DATA FILE *1
2 TSR(l: 100) GRP,

:3 HDR RECORD,
4 HOD FLD (CHAR 21),

: TR(1O) RECORD,
4 TSDATA FLD (PIC'8B(1O)-W.(7) ")"

1 OIWZ'tD FILE kEY IS ADR ORG P.T,
/* A UNIFORM FILE FOR SENDING BACV TO MODULES *!
2 01G(1:10) GRP,

" R(.s) RECORD,
4 ADR FLD (CHAR 14, /* MAILING ADDRESSES */
4 (IWTSOPWSPM$Z)

ARE FLD (DEC FLOAT(15)):

END.OIG(T)=T=SIMPD;

INTX FILE, /# INTEGRATED FILE BEOFRE DISTRIBliTION */
2 IN2R(1:1O) RECORD,
:3 (WT$,PWS,PM$I,F'M$2,PMr.PM$4,PM$5,PMS6)

ARE FLD (DEC FLOAT(15)1"

END. IN2R(T)=T=SIMPD;

(T, I,J) SUBSCRIPT;

I ,2WORLD FILE, /* LOCAL RESLtTS *
3 HO RECORD,

4 FHD FLO (CHAR 124),
3 BLKO RECORD,

4 FO FLD (CHAR ,.
3 GOP GRP,

4 ENDJHD RECORD,
5 ENDHDN FLD (CHAR 124),

4 END.FR RECORD,
5 ENDFF FLO (CHAR 80),

4 NAMES RECORD,
5 NMI FLO (CHAR 1241,

4 B1lV RECORD,
5 FL RD (CHAR 80).

4 VALUESI(!:10) RECORD,
5 YEARI PLO (PLC ,'Q,,),
5 f !$3, V$51, X$61- 312, Y$132, Y52. Y11-)
FLO (PIC"B8(7)-oV.(.6)9'),

4 BLK!! RECORD,
Fl! FLD (CHAR 8),

4 NAkPS RECORD,
5 NK FLO (CHAR 124).

4 BLK2 RECORD,
5 F2 FLD (CHAR 8),

4 VALUES2(!:!0) RECORD,
5 YEAR2 FLD (PIC 'Q9').
5 (353- X$63, X$3, Y$54, (564, .5. S65)
FLO (PIC'B8(7)-9V.(6)9"!,

4 BL122 RECORD,
5 PF2' FLD (CHAR 80),

4 NAMES3 RECORD,
5 NM3 FLD (CHAR 1241.

SbL'3 RECORD,
5 F3 FLO (CHAR 80) ,I

4 VALUES3(!:!O) RECORD,
5 YEAR? FLO (PI C j

" . . taj-&'- . iW; . k.,.- .. &-' . . _.. .. "., .-. _ .. . - "-. . .. - - - -. ". . -. - - - - - - - -- ; -I
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5 (X$1., X$36, 1$5/. Wk., Y177.,XST7A. 2V.6)

FL'D (PIC'BB(7)-9V.(&!'"),
4 BLK33 RECORD,
5 F33 FLD (CHAR 30),

4 NA MES4 RECORD,
5 NM4 FD (CHAR 124).

4 ELK4 RECORD,
5 F4 RD (CHAR 80).

4 VALiUES4(1:10) RECORD,
5 YEAR4 FLD (PIC 'W99W),
5 (X76,PX75,345, $2, 3515. YS57,PY$74)

R"LD (PIC'BB(7)-9V.(S)9'),
4 PLK44 RECORD,
5 F44 FLD (CHAR cSO).

- NAE5 RECORD,
r9 NMS RLD (CHAR 124).

4 BLK5 RECORD.
5 F5 FLD (CHAR .4)),

4 VAL.ES5(1:10) RECORD,
5 YEARS FLD (PIC .9994'),
5 (X24, X$14, X$74,PX$73, $43, 05,2 173))

FLD (PIC'BB(7)-9V.(6)9'),
4 BLK5 RECORD,

5 55 FLD (CHAR 80).
* 4 NAME6 RECORD,

5 NM6 FLD (CHAR 1241,
4 BLK6 RECORD,

5 F6 FLD (CHAR 8).
4 VALLES(1:10) RECORD,

5 YEAR6 FLD (PIC '9999.,
5 (PX$72, X$62, X42, X$72, X$71, X$7. PX$711
FLD (PIC'BB(7)- .(6)9'),

4 BLKS6 RECORD,
5 F 6S FLD (CHAR 80),

4 NANE7 RECORD,
5 NM7 FLD (CHAR 124).

4 BLK7 RECORD,
F F7 FLD (CHAR 90).

4 VALLIES7(1:10) RECORD,
5 YEAR7 FLD (PIC '99WQ'),
5 'X$41, X$21, XS17, X527, X$37, X$47. X$57)

DFL (PIC'BB(7)-9V.(6)9"),
4 BLK77 RECORD,
5 F77 FLD (CHAR 80),

4 NAME8 RECORD,
5 NW8 PLD (CHAR 124),

4 BLK8 RECORD,
5 F8 FLD (CHAR M),

* 4 VALUESS(1:10) RECORD,
5 YEARS FLD (PIC '999'),.+-'. 5 (X$67T,PX$77, M$7. PM$7)

FLD (PIC'BB(7)-9V.(6)q'),
" BLK88 RECORD,

5 F..9 FLO ,,CHAR 3O).
- D- HO RECORD,

5 EXDHDN FLD (CHAR 124),
4 EXDSFR RECORD,
S EXD-FF FLD (CHAR ),

4 NAME9 RECORD,
5 NM9 FLD (CHAR (24),

4 ELK9 RECO D,
5 F9 FLO (CHAR 8'.

4 VALUES9(1:1O) RECORD,
5 YEAR9 FLD (PIC "Q"*Q'),
5 (OS2 OPXS2 0V52 .l-APYOL ,USAYOl6AR ,OM$1

FLD (P!C'BB(7)-'V, (A)9"A,

0
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4 BLY99 RECORD,
5 FQ9' FLD (CHIAR 80).

4 NAME 10 RECORD
5 NtO FLO (CHAR 124).
21SF)I RECORD,
5 Fl') FLD (CAR :301,

4 VALUIESIO(1:l0) RECORD,

PLO (PiC'8(7-9V. (AQ 1
4 BLK10IO RECORD,
5 F1010 FLD (CHAR :30),

4 NAME 11 RECORD,
- NMIl FLD (CHAR 1'24),
811111I RECORD,
5 Fil F LD (CHAR 80).

4 VALUESIlC 1:10) RECORD,
F VEARII FLD (PIC ' 9Q9Q),
5 (OX$3 , OTWNPY,OTWNY .OTWNR 11M$4 OP$ . 03s4

FLD (PIC'BB(7)-9V. (69'.
4 8)11111 RECORD.
5 Full FLO (CHAR 80),

4 NANE12 RECORD,
5 N4MIl FLO (CHAR 124),

4 4 8B112 RECORD.
5 F12 PLD (CHAR 30).

4 VALLIES12C :10) RECORD,
V EARI2 PLD (PIC '9Q)

5(OKRAPY. OKRAY .OV*RAR OM$
OPS .OXSS ,OPH4IPY)
FLD ePIC'BB(7)-9V.(6)9'),

4 8)11212 RECORD.

5 122 PLD (CHAR 80).S4 NANE13 RECORD,
5 NM913 PLO (CHAR 124).

4 BLK13 RECORD,
- F13 FLD (CHAR :30).

4VALUESI3(1:lO) RECORD.
YEAR13 FLD (PIC '99Q9'),
S(OPHIY ,OPHIR O0916 .OPYI4 .OYW6 ,OTHIPV,OTHIV)
RLD(PCB7)Q(A')

4 BLK.1313 RECORD.
5P1313 FLD (CHAR 80).

4 NAME14 RECORD.
5 NM914 PLD (CHAR 1241,

48BL14 RECORD.
.. F14 FLD (CHAR 30).
4VALUES14(1:lO) RECORD.
5 YEAR14 PLO (PIC '99r4Q'),
5 OTHIR

RDO (PIC'88(7)-9V,C6)Q'):

ENDJ4EKOP (' ,42:EN D13 E NOAU1 V AR IAB9LES'
EXDHDtCOPYU' '.42)::'E V 0 G E N 01 11 q VAR I A BL E :
(END. VALUIES (T),.END. VAUIJES2(T), END. VAUJES;:3(T), END. VALLUES4T),

END. VALLIES5') -END. VALUJES6(T).END.YVALUES7(T),.END.VALUES(T 1)=TrqIMPI:
iE~t.VACUESQ(T).-END. VAIJESIO(T .END. VALIJESIlI(T).ENF. VALUIESI2UT
END. VALUESl3(T).-END. VALLIES4(T I )zT=3Ip9 PD: -

(YEARIITM,YEAR2(T),-VEAR3(T),YEAR4(M).VEARS(T I -YEAR6(T) -VEAR7 fT),EARE',IT).
YEARQ( T),.YEARIO TI . "EARl!() I. EAR12ET) ,YEAR3(T), VEARIAC T)

F0,Fl,F2'.F3.F4,F 5.F6,F7.P3.FIl.F22 ,F33'.F44.F55,F66,F77)='

(E!D..FFEYDFF):'"
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II .FHCt=r:CPY( .44): LOCA~L IMiJLATION PIRT FrOR: WrIR!.DY:*
NMI='YEAR xvSI X651 ~U

NM2-V'EAR X$53 Y6

NM3='YEAR Y$16 X$36 X4 5
X$77 PX$76 X$26',

NM4-'YEAR X$76 PX($75 XS4!
X$75 PX$741*

NPK='YEAR X$24 X$14 XS74 PY It71'

Nti6='YEAR PYS72 X$62 3S4)
X$71 Y7PS1.

NMi7='YEAR Y$41 Y$1 21 7

YS':17 ~ YS47 Y51
NM8= YEAR yS67 PXS77 MS7 OM147'!

WPIC)WYEAP PX %$ JAPPV *iAPy
V J4PR MS., 3V

NMI=YEAR ($3l TWNPY TUNY TWNR'
M14 y XV

NM2--'YEAR KRAPY lCRAY VPRMI19
PXS5 X$.PHILPY"

NM13:YEAR PHTY PHI4R m$A PSA

NM1I4=YEP'P THIR':

uPXS2=X$2;
ib:APY=USAPY,
CllUS4Y=UqIAY;

ClJAFPPY=JAPPYl4 i J'APYzJAPY:
!-UWRz-JAPR'

OIPX$3=PX$31;
!X$3=X$3*,
lOTWIIPY=TWNPY:,
0TWNY=TWNY,
i'TWNR=TWNR*;

03X4=0X4;

iOVRAPY-tfRAPYi
)KRAY=KRAY!
K.t RARW(RAR

CiM$5=M$5*;
rPX$5*=X$5*
i)X$5=X$S:
OPHIPY=PHIPY;
irM4IY=PHlY:

OM$6=M$6;

OTHIPY=THIPV;
9OTHIY=THTY:
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BLOCK WRD: MAX ITER IS 100, RELATIVE ERROR IS 0.01:

(USARCJAPRC. TWNR, PI RC, TAIRC, kRARC)=DEPENDS ON (')I'i:

INITIAL.N$(T)=IF T=1 THEN TS.JiATA(7,T)j
INITIAL.PK$l(T):1F Thi THEN TtDDATA(S.T)

ELSE PXSIT-1):
INITIAL.Xs1(T)=IF hil THEN TS-DATA(9.Ti

ELSE XS1(T-1):
INITIAL.JAPPV(T)zIF hij THEN TS-DATA(10.T)

ELSE JAPPYT-il:
INITIAL.JAPY(TI:IF hil THEN TS-DATA(11,T)

ELSE JAPV(T-18 2
lNITIAL.JAF'R(T)=IF T=i THEN TS..DATA(12,T)

ELSE -JAFR(T-i):

INITIAL.M'2(T)=IF hil THEN TS..DATA(1.T)
ELSE M$2(T-i);

INIT]AL.P%$52(T)=iF hil THEN TS-.DATA(2,,T)j

INITIAL.X52(T):IF hij THEN TSSDATA(S,T)
g ELSE X$2(T-1),

INITIAL.USAPYCT)=IF hil THEN TS-DATA(4,T)
ELSE USAPY(T-1):

INITIAL.USAY(T)=IF hil THEN TS DATA(5,Tl
ELSE LGAY(T-I8

INITIAL.U~SAR(T)=EF Tml THEN TS.JDATA(6,T)
ELSE LSAR(T-i);

INITIAL.M$3(T)=IF hil THEN TS-.DATA(i3,T)
ELSE M$S(T-1):

INITIALPX$3(T)=IF h=I THEN TS..DATA(14.T)
ELSE PX53(T-l);*

INITIAL.X$3(T)=IF hil THEN TS-DATA(15,TI
ELSE X$SCT-1),i

INITIAL.TWNPY(T)=IF hit THEN TS..DATA(16.T)
ELSE TWNPV(T-1)i

INITIAL.TWNY(T)=iF hil THEN TS-DATA(17.T)
ELSE TWNY(T-i):

INITIAL.TWNR(T)=IF 7=1 THEN TS-DATA(1S,T)

ELSE TUNR(T-l):,

INITIAL.PXS(T)=TF hil THEN TSDATA(2OT)
ESE P4-1):

INITIAL.PX$4(T)IF hil THEN TSDATA(1,.T)
ELSE X54(T-)

INITILI:R4T)IF TI THEN TSDATA(22I,T)
ELSE KRA(T-):

INITIAL.KRAY(T)IF hil THEN TSDATA(2.T)
ELSE KRAY(T-i

INITIAL.KRAR(T)=IF hil THEN TS-DATA(24.T1
ELSE kRARIT-l):

INITIAL.M$51(T)IF hil THEN TSSIATA(2 4T)
ELSE KRA5(T-)

INITIAL.PX5(Th=IF hit THEN TSDATA(26,T) ~
INITIAL.fl I(T)IF hil THEN TSDATA(2.T)

ELSE 359(T-11,
INITIAL.PHIPY(T)=IF hil THEN TSJIATA(2.T)

ELSE HIPYT-11
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INITIAL. PHIV (T)=IF T=! THEN T.,DATAf2Q.T)
ELSE PHIY(T-1):

INITIAL.PHIR(T)=IF TIt THEN TSSIATA('30.T)
ELSE PHIR(T-1);

INITIAL.M56(Ti=IF T=1 TH4EN TS -ATA(31,T)
ELSE M$6(T-I);

INITIAL.PX56(T)=IF T=1 TH4EN TS..DATA(32l,TI
ELSE PXS6(T-1)q

INITIAL.X56(TfrIF hil THEN TS-DATA(331 T)
ELSE X16(T-i):

* . INITIALTIPY(T)=IF hij THEN TS-.DATA(34,T)
ELS' E THIPV(T-i);

INITIAL.THIY(T)=IF TIj THEN TS-DATA(35,T)
ELSE TRIYeT-i

INITIAL.THIR(Tk=IF T~l THEN TS-DATA(36.T)
ELSE TrHIR(T-l):

i* THE FOL-LOWING EQUATIONS ARE PROVIDED BY MR. YASJDA. LINk PROJECT, 1904t

BLOCK WORWIMD: MAX ITER 1S 100, RELATIVE ERROR IS 0.01;

XS3i(T) = IF TYeLAG
*THEN -95.3078 + 0.001490 *JAPY(T)41.0Oi*1000(/35)7.60

+ 0.3594 * X531I(T-i)
ELSE TS..DATA(3,7.T);

051JT) IF T>LPO
THEN 219.138' + 0.001507 * JAPY(T)*1.001*1000O.0/357.60

-127.4736 *PXSS(T)/(JA4PPY(T)/1.001*35'7.6.0/J-APR(T))
ELSE T&.DATA(56,T)8

X61(T) =IF T)LAO
THEN -10.5131 + 0.0005825 * JAPY(T)4I.00)1*1000,.0/357.60

+ 0,5160 * X$61(T-i)
ELSE TS-DATA('38.T);,

XI'2(TI IF T)LAO
THEN 1386. 7429 + 0.00CM.33 * LrSAY Tfo. Q I .s*lIy(xC.o +

0.738K f X512(T-1)
-3132.5297 * PX11(T)/(US:APY(T)/0.Q13,6/USAR(T))

ELSE TS..DATA(39.T);,

X532(T) tF T)LAG
THEN -59.5317 + 0.0005630 * USrAY(T).0.Q13641000.0 +

0.8706 * X532(T-I)
-299.5960 * PX53(T)/(USAPY(T)/0.9134/UScAR(Tfl

* ELSE TS-DATA (40, TI:

X$52(T) IF T)LAG
THEN 169.3380 + 0.0002769 * tSAY(T)*0.'t36.!100.fl +

0. 7609 * X$52(T-1
- A3.9859 4 PXtseT)/(US:APY(TI/O.QI)6IUSAR,(Tfl

ELSE TS-DATA(41,T):

* (Sl13(T) IF TX-AO
THEN 29.3277 + 0.12,95j * TWNY(T)40.Q67/40i.10 +

0.5790*X13-)
- M6.,S54 * PXII(Ti*TUNR(T)/40,10

ELSE TS.-DATA(42,T):

X153(T) IF T)LAI
THEN 10."33 + 0.003610 *TWNYfT)*0.067/40.10 +
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- 1.3t3O PY$5(T)*TWNR(T)'40.10
ELSE TS-DATA(43,T);

XS63(T) IF T>,LAC3
THEN -16.498R2 + 0.007688 *TWNY(TI*0.967/40. 10
ELSE TS-DATA(5-7,T)t

X$34(T) IF T)LAG
THEN -28.0751 + 0.007392 *KRAY(T*1000).0/316.0
ELSE T&.DATA(58,T);

X554(T) IF DLAG
THEN 9.0981 + 0.002960 * KRAY(T1*1000.0/36.O

11.575 # PXSST)*RART0316.0
ELS.-'E TS-DATA(59, T):

X$c4(T) =IF T:;Lfi)
THEN -2.7504 + 0.0005176 *KRAY(T)*1000.0/3,16.0 +

1.0009 * X564(T-1)
ELSE TS-DATA(44,T):

X153-5(T) IF T)LAG
THEN -12.31210 + 0.00423 4 * PHIY(T)1.257/5.729 +

0.72,58 *X535(T-1)

- 11.1044 * PXS3)(T)/ (FHIPV(TI/f1.257*5.729/PHIR(TU)
ELSE TS-EiTA(45,T):

X565(T) I )A
THEN 8. 1989 + 0.003371 PHIY(T)*1.257/5.729

20.3589 * PX56(T)
/ (PHIPV(T) / 1.257*5.7291PN1RT)

ELSE TS-DATA (60. T)

X516(T) IF T)LAO
THEN 372.8650 + 0.05599 * THIY(TI1.135f20.930A +p

0.3090 * X516(T-1)
- 429.7248 * PXSI(T)/
(THIPY(T) l. 135*2,0.93/THIR(T1)

ELSE TSJJATA(46,T):

X$36(T) IF T)LA'
THEN 4.9402 + 0.005841 * THIY(T)*lz.3/0.30-C 12.5028 * P153(T)

/(THIPY(T)/1. 1.35*20.93,/THIP(T))
ELSE TS-SATA(61.T)i

X546(T) =IF T) LA)
THEN 0.6136 + 0.001597 *THIV(T)*1,13,/20.930 +

0.2r52 *X%46(T-1)
-5.8594 * PXS4(T)/(THIPV(T)/1.135*2,0.Q30 '/THTR(Tfl

ELSE TS-DATA(47,T):

X556(T) IF T>LAO
THEN 2.1872 + 0.0003950 * THIV(T)*1.13j5/20).Q30 +

0 .4745 * W56(-t)
- 3.6961 * PXSS(T)/(TH4IPV(T)/1.135*20.Q3/THIR(T))

ELSE TS-DATA(48,T)!

4 WTS(T) =IF P'LI
THEN X51(T) + 152(T) + Y$5(T) +

154(T) + X55(T) + Y56(T) + %17(T)
ELSE TS..DATA(62',T):

0577MT IF T)LAG
THEN ALPHA(T * UTS(T)
ELSE TSIEATA(63,T):
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PX$76(T) =IF T>ILAG
THEN 8ET476(T) *PW$(T

ELSE TS.DATA(64,T):

PM$6(T) IF T),LAO
THAEN (PXSI(T) * X$161T) +

PXS2(T) * X526(T) +
PX$3(T) * X$36(T) +
PX$4(T) * X$46(T) +
PXS5(T) * XSC(T) +
PX$6(T) * X$66(T) +
PX$76(T)* X$76(T))/
(X516(T) + X$26(T) + X$36(TI + XS46(T) +
X$56(T) +Yt64(T) + X576(T)

ELSE TSj3A74C45. 7);

I$246(T' IF r"LAG
THEN 401.3615 + 0.01491 * THIY(T)*I.135/2qO.".0 +

0.2443 * $216(T-1)
- 137.6322 * PXS2(T)/PM$6.(T) -
245.C0 PX52(T)/(THIPY(T)/1.13,5*20).'30/(i~THIR(TH)

ELSE TS-DATA(49,T);

X$74(T) =IF flAO
THEN M$6(T)-(X$16(T)flt2)6CT).

.4 X$36CT)0X$46(T)+XS596CT)+X$66(T))
ELSE TS-DATA(66,T);

PXS75(T) IF T)LAG
THEN BETA7(T) * PW$(T)
ELSE TS-DATA(671T);

X$45(T) IF T)LAG
THEN 2.0984 + 0.001067 f PHIY(JM.257/5.729-

7.4456 * PX$4(T)/PI$5(T)
ELSE TS..DATMAT1;

X$259(T) IF D)LAG
THEN 735.0191 + 0.01530 * PNIY(T)*l.2957!5.72Qo +

0.37*X525(T-1)
M 31.942 * PX$2(T)P14r1(T

260.8525 *PX$2'(TUI(PHIPY(T)/1.2597*5.729/!PNIR(T)1
ELSE TS-DATA(50,T);

PM$5(T) IF T>LAG
THEN (PX$l(T) * X515(T) + PX$2(T) * X525i(T) +

PX$3(T) * X5351T) + PY$4(T) * X345MT +
PX$5(T) 4 X555(T) + PX$6(T) * X$65(T) +
PXt75(T)* X$75(T)) a
CXA$15(T) + X525(T) + Xt3S(T) +3
X$45(T) + X$5517) + Xt65(T) + 17(T)

ELSE TS-DATA(69,T);

X$1517) IF D)LAG
THEN Q83. 1558+0. 1030 * PHIYCT)*1.257/5.72!9+

0.363A * X$ISCT-1)
- 1223.37 * PX$I( T)/PNS5(T)-
218.52n3 * PXI(T$PNIRMIS.72? 3

ELSE TS-DATA(5I,T);,

XS75(7) IF T)LA3
THEN I'$5(T) - (X$1517) + $2,517) + $31517) +

X$4517) + 357-M) + X$65(T))
ELSE TSSIATA(70,T)!
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PX$74(T) =I F T) LAO
THEN BETA74(T) *P145(T)

ELSE TS-DATA(71,T);

X$24(T) =IF TYLAG
THEN 813.5893 + 0).076K2 * VAV(T)*1000.0/316.0-

505.25,23 * PXS2-(T)/P114(T)
- 266.6582 * PX52'(T)/(KRAPY(T)*316.0/KRAR(Tfl

ELSE T'lDATA(7ZT):

PP154(T) IF TY.LA3
THEN (MI~(T) * X514(T) + PXS2(T) * XS24(T) +

PXS3(T) * KS34(T) + MUM(T * X544(T) +
F'X55(T) * X554(T) + P15,6(T) * X564(T) +
PX574(T)* X574(T) /
(1$14(T) + X$524(T) + X534(T) +
Y544(T) + Y554(T) + 1564(T) + 0574(T)

ELSE TS..DATA(73,T):.

X514(TM IF T)LAO
THEN 34.11+ 0.1143 * VA()10./1.

3.097.0086 * PISI(T)/P154(T)
- t65.7276 * PXS1(T)/(KRAPY(T)*316.0/KRAR(Tfl

ELSE TSSIATA(74,T):

* 1574(T) =IF T) LA
THEN P154(T) - (X514(T) + V524(T) + 1534(T) +

X544(T) + 0554MT + X64T)
ELsE TSJATAC75,T):

PX$73(T) = IF T)LS0
THEN 8ETA73(T) * P145(T)
ELSE TS2DATA(76,T);

1543T) =IF r.>LAG
THEN 12.2308 + 0.004332 * TI#4V(T)4O.Q670/40.I0 +

0.3139 * 3543(T-1)
- 27.3673 * P154(T)/PH53(T)

ELSE TS..DATA(5,2,T);

PN53(T IF T)LAO
THEN (PX51(T) * 1513(T) +

P152(T) * 1523(T) +
P153(T) * 1533i(T) +
ROM(T * 3543MT +
PX55(T) * Y553(T) +
POW6() * X$&3(T) +
P1573,(T) 3 173(T)
(X513(T) + 1523(T) + 1533(T) +

* 143(T) + 1553(T) + X$63(T) + 1573(T)
ELSE TS-DATA(77.T);

1523(T) =IF FLAG
THEN 1144.7830 + 0. 1027 * TWNV(T)*0.9670/40.10 -

1253.4655 * P152(T)/P153(T)
ELSE TS-DATA(78,T):

* 173(T) IF T)LAO
THEN "13(T) -

MOM3(T + 1523(T) + X533(T) +
1543T) + 1553(T) + 1563(T))

ELSE TS-DATA(7Q.,T):

PX572(T= IF T)LAG
THEN BETA72(T) * P145(T)
ELSE TS-DATA(80.JT):
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X$.62 (T) IF T)lPJ3("1THEN 02.0317 + ().oO01201 Lr~AY(T)*0.QI360*1( (.,.+
0.1428 * XS6:(T-1)
-113.Cw00 * PISA (T)/PM $2(T) -

V.- t~~6.41200 * PXS6(T)/(IJSAPY(TI/0.9Q136/U$ AR(Tfl
ELSE TS-.DATA(93,T)'

P2M IF rTLAG
THEN (PXSI(T) # X$12(T) +

PX$2(T) # X$22(T) +
PXS3(T) * XM3(T) +
PX$4(T) # X$42(T) +
PXS5(T) 4 X$r'(T) +
PX16(Ti # X$62(T) +
PI572-(T~o XS72(Tl)
(XW1(T) + Y$22(T) + YS1MT +
XW4(T) + XS52(T) + Y$61(T) + U12(T

ELSE TS-DATA(81,T);

XS4'&(T) IF T:>LACG
THEN -261.4902 + 0.001363 * l~3AY(T)*0.O136X.0.C

0.4,q%, * 142(T-1)
-659.1006 *PX$4(T)/Pfl2(T)-
170.9Q80 * PX$4(T)/(ISAPV(T)/0.91,36/USAR(T))

EL SE TS-DWATA(,

* K572(T IF T)LAG
THEN 14$2(T) - (X$12(T) + XVM2T) +

X$32)(T) + MI4(T) + X$51(T) + X$.$2(T))
ELSE TS-DATA(82.T8

X$71(T) =IF T)LAG
THEN M$1(T) - (MI1(T) + X$21(T) +

X$31(T) + X$41(T) + X$51(T) + Xtk1(T))
ELSE TS-ATAl,3,T),,

XS7(T) IF T/LAfO
THEN XS71(T) + X$72)(T) + X$73(T) +

XS74(T) + X$7)5(T) + XS76(T) *X$77(T)
ELSE T5..flTA(8&,T)!

PWS(T) IF M)AG
THEN (PXSI(T) * XSI(T) +

PX$S&CT) * Xt2(T) +
PXV;3(T) MM +$CT
PX$4(T) 4XS4(T) +
PXS(T) 4X$5(T) +
PX$6(T) *X$6(T) +
PX$7(T) 4X$7(T)l
(X$I(T) + X$2(T) + X43(T) +

* ~XW4T) + X$5(T) + X$6(T) + 0$7M)f
ELSE TS-DATA(?5,T);

PX$7!(T) IF T:;LAI3
THEN BETA711T) * 1ST)
ELSE TS-DAT(36,T):

X$41(T) IF T'LAO
*THEN 210.713)5 + 0.003307 *JAPY(T).1.001.100)0.0/35cj7.60

+ 0.2608e * XS41(T-11 5 99.(1852 4PYt4(T-1)/PqttT)
ELSE TS-DATAV99,T):

* PM$l(T) IF TrLA0
THEN (PXSI(T) * YS11(T) +

PXIT) * IS21MT +
L':,(T) Ml X3(T) +

0
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PXS4(T) * X541(T +
PYS5(T) * X551(T) +
PX54(T) * X%61(T) +
PX$71(T)* X571(T))/
(XUIMT + K521(T) + K$31(T) +
X541(T) + XSI(T + X$61(T) + K571(T))

ELSE TS..DATA(87.T);

X$21(T) IF T)LAG
TH4EN 3210.5984 + 0. 02082 * JAPY(T)41.0Ol*1000.0/3:97.60

- 3169.0851 * PX12(T)/PHSI(T)
ELSE T&.-DATA(88,):

1$17(T) =IF T}LAO
THEN X51(T) - (X111(T) + 151'2(T) +

X11'(T) + XS14(T)+XW1(T)+516(T))
ELSE TS...EATA($,. 7):

Y527(T) IF F;,LAOi
THEN X52(T) - (1521(T) + Y$5&2(TI +

X523(T) + XC24(T)s-X525(T)+XS26(T))
ELSE TS-DATA(90,T):

X537MT IF T, Ar3
THEN X53(T) - (X531(T) + X532(T) +

* *033MT+ X534(T)+X535(T).X53c6CT))
ELSE TS-DATA(91,T);

X%47(T) IF T)LAG
THEN X54T) - (3541MT + X54(T) +

X543(T) + X544(T)+X545(T)+X546(T))
ELSE TS...fATA0l2,T);

0557MT IF 7)-LAG
THEN X55(T) - (1551(T) + 1552(T) +

X553(T) + X$54(T)+X555(T)+X556(T))
ELSE TS-ATA(93,T);

0567MT IF T)LAG
THEN X56(T) - (X561(T) + X562(T)+

156(T) + X564(T)+X$65(T)+1566(T))
ELSE TS-DATA(94, T)

PXl77(T)= IF P',LAG
THEN BETA77T) * PUST)
ELSE TS-DATA(95,T):

1157(T) IF T>LAG
THEN *517() + 1527(T) + 1537(T) +

X$47(T) + 557(T) + X567(T)+X577(T)
ELSE TSDATA(96,T):

P1157(T) 2IF PLAG
THEN (P151(T) * 1517(T)+

PVS2(T) * Y$527(T)+
PX53(T) * 1537(T) +
P154(T) * 1547(T) +
PX55(T) * X557(T)+
P15.6(T) * X$67(T) +

o PX577(T). 1577(T))I
(X517(T) + 1527(T) + X137(T) +
1547(T) + 1557(T) + X547(T) + X577(T))

ELSE TS-DATA(97,T):

END WaRLDM'D;

/4 DEFINE ADDRESS OF THE MESSAE TO BE SE NT 0.1
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AD(R(T,J):IF J:I THEN CHPTRL( I1JAPANSAPX)
E L'3E IF (=2 THEN 'I UqSMBX'
ELSE IF J=3' THEN 'ZLTAZWAALSYBX'
ELSE IF J=4 THEN 'IWYOREASJIBX'
ELSE IF J=9 TH4EN II1PNILSJIBX"
ELSE 'IITHAIS-JBXI:

I. DEFINE THE ESSAGjE
FM1Z(T,u):IF J1l THEN PN$1(T)

ELSE IF *j=2 THEN PM$2.(T)
ELSE IF *1--3 THEN P1453(T)
ELSE IF J=4 THEN PM$4(T)
ELSE IF $5 THEN PM455(T)
ELSE P1456(T):

flWTS(T,,,4JTS (T):

END WRD:*
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A2.3 THE USA MODULE

MODtE: LtA:
S.iJRCE: I1LSA,TS81.SA, CTRIUA:
TARGET: O1LSA,O2t-tA:

I IlUSA FILE ORG MAIL, /* RECEIVED FROM THE WORLD MOVLE */
2 IIR(.) RECORD,
3 PROCID FLD (CHAR 14),
3 (WT$,PWSPN$2)

ARE FLD (DEC FLOAT(15)):
END. IR(T)=T=SIMYPD"

I TS[9_3A FILE,
2 IR(1:18) RP,

3 HES RECORD,
4 H'D FLD (CHAR 21),

3 TRQIO) RECORD,
4 TSDATA FLD (PIC'BB(I0)-QV.(7)9'):

I CTRJSA FILE, /* THE CONTROL FILE */
2 CR RECORD,
3 STARTYR FLD (PIC '99'), /* STARTING YEAR OF SIMULATION *1
3 LAG FLD (PIC .'9'), /* LAG FROM THE STARTING YEAR *1
3 SIMJPD FLD (PIC '99'). /* SIMUILATION PERIOD. 'I

2 121R RECORD,
3 DHD FLD (CHAR 109),

2 12R(*) RECORD,
3 HDYR FLD (CHAR 4),
3 (USAGP, XS$2,MS$2,DUM,USAR)
ARE FLD (PIC'BB(1O)-9V.(7)9');

I OlUSA FILE ORG MAIL,
2 OIR(*) RECORD, /* SEND TO THE WORLD MODULE ,/

3 MAILAOR FLD (CHAR 10),
3 (M$2,PX$2. X$2,USAPYUSAYUSAR)

ARE FLD (DEC FLCAT(15));

MAILADR=I IUSAS';

I O2USA FILE, /* LOCAL RESULTS 4/
3 ND RECORD,

4 HF FLD (CHAR 13),
* BLKO RECORD,

4 FO FLD (CHAR 132),
3 VALUES GRP,

4 ENDHD RECORD,
5 ENDHDD FLD (CHAR 124),

4 8K.K1 RECORD,
5 KFI FD (CHAR 80),

4 NAMESI RECORD,
5 NM1 FLD (CHAR 132),

4 BLKI RECORD,
5 Ft FLD (CHAR 132),

4 VALUESI(1:1O) RECORD,
5 YEARI FLD (PIC '99"Q'),
9 (OM'2.,OPX$2,01$2, O.WSAY,OfiSAY,.IS.AMIrAPX)

ARE FLD(PIC'B(7)-9V. (6)9').
4 8KK2 RECORD.

5 BkF2 FLD (CHAR 80),
4 NAMES2 RECORD,
5 NM2 FLD (CHAR 132),

4 BLK2 RECORD,
5 F2 FLD (CHAR 132),

* 4 VALUES2(1:1O) RECORD,

0"

- - - a - . .
S*. -- i- - -. a a
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5 VEAR2 FLD (PIC ',99W),
5 (LSAK.LSAI.USAC)

ARE RLD(P1C'BB(71-QV.(6)9').
4 BKK3 RECORD,
5 8KF3 RDO (CHAR 80),

4 EXD..HD RECORD.
5 EXDJ4DD FLD (CHAR 1214).

4 EXDJB RECORD,
5 EXDF RDO (CHAR 124).

4 NAIIES.3 RECORD.
5 NM13 FLD (CWA 132.).

4 BLK3 RECORD,
5 F3 FLO (CHAR 132)

4 VALUES3(1:1O) RECORD.
5 YEARS RLD (PIC '00)
5 ('JUTS. OPUS,OPNS2, OUAR. OUSOAGP, OXSS2L,OMSS2)

ARE RLD(PIC'BB(7)-WV.(6)9').
4 BKK4 RECORD,

5 BKF4 FLO (CHAR 80),
4 NAHES4 RECORD.

5 NM4 PLO (CHAR 132).
4 BLK4 RECORD.

5 F4 RDO (CHAR 132).
4 VALIJES4(1:1O) RECORD.
5 YEAR4 RDO (PIC '99')
5 (DOW)

ARE PLD(PIC'BD(7)-9V. (6)91);

END-HDt:WPYV '.42:VE N DO0G E N G US V AR I A B L ES'":
EXDJ4E',CPY(' '.42)t!'E X 0 G E NO0 U S V AR I A B L E S':
fEND. VALUES1(T).END. VALUES2(T),END. VALUES3(T).END.VALUIES4(T) )=TSIM-YD;

CeqS2=N$2;,
OPXS2zPX$2;

CUEAPY IJSAPY;
OUSAY-iJSAY;
OiJSAiJP=ISAOP; S
OXSS2=-XS$2;

ODUIPI=M;*
OUSAR=CTRUfSA. USAR;,

(YEAR1(T).YEA~R2(T).YEARS(T),VEAR4(T) )=STARTJYR+T:,
(PO,PI.P2,F3,F4,BKPI,81P2'4,BK3,BK4,EXD.P)r '

HFD=:C~f'Y( '.46)8'LOCAL SII'ILATION REPORT FOR: USA':l

NMI:YEAR f"2 ''1 MX2
112 '8: USAPY
USAY 'W' USAM

USAPX
Nt92='YEAR UISAX ':' USAI

fl3='YEAR UTS '1' P$
t, PI' 2 'L'UwA
t:, JSAOP '8' 152

NM4='YEAR W,?V

T SUBI 'PT;
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BLOCK U-S: MAX ITER 13 240, RELATIVE ERROR IS 0.01;,
* IIR(T)=DEPENDSOfN(OIR(T)),

INITIAL.WTS(T):IF T(.zLSG THEN TS-DATAC9,T)
ELSE WT$(T-lfl

INITIAL.PUS(T):IF T@-LA3 THEN Tt-DATA(10,T)
ELSE PIJS(T-1);

INITIAL.PFM2(TI=IF T(=LA3 THEN TS..DATA(11,T1
ELSE P1152(1-1)1

I' THE FOLLOWING EQDUATIONS ARE PROVIDED BY MR. VASLIDA, LINK PROJECT, 1984 '

BLOCK L.IAMD: MAX ITER IS 20, RELATIVE ERROR 13 0.01;

11521) =IF T} LAO
THEN -27,696.3164 + 0.02.479 * LtSAV(T)*.9136*1000 +

0 .7377 # M52(T-1) *
16213.6127 * IJSAPY(T) /0.913.6/PM152(TI*CTRIJS-.A.US1AR(T)

ELSE TS..DATA(6,T);

USAM(T) =IF TLAG
THEN (012 (T) + MW 5(T) / (0. 'M, * 1000.)
ELSE TS-DATA( 12,T):

IJSAPY(T) =IF T)LAG
THEN' 0.03639 + 0.6478 * USAY(T)11171.1 +

0.2820 * PM1152(T)/1.21*CTRIJSA.USAR(T)
ELSE TS-DATA(13.T);

IJSAPX(T) zIF T)LAO
THEN 0.03325 + 0.3617 * IJSAPY(T) + 0.6126o PW$(T)

*C T RIWA. JJSA R (T)/1. 128
ELSE TS..DATA(14.T);

PX$2(T) IF TYLAG
THEN -0.007977 + 1.0014 * USAX(T)*CTRUSA.U5SAR(T)/0i.Q31
ELSE TS-DATA(15,T);

X52(T) IF rIXAG
THEN 36598.1049 + 0.0r361 *WT$ld) + 0.2892& X$2(T-1)

- 322%.8591 * PX52(T)IPW$(T)
ELSE TS-DATA(7.T);,

IJSAX(T) zIF T),LAGi
THEN (X52(T) + X552(T))f (9.31 * 1000.)
ELSE TS2ATA(16.T):

USAI (T) IF T)AG
THEN -33.6486 + 0. 1879 * LISAYCT) - 31.1877 *DLIPI(T)

ELSE TSDATA(17,T);

IJSACIT) IF TfLAG
-THEN -22.0848 + 0.2736 * IISAY(T) + 0.6127 *IPW(-f -

9.4185 * DU(T)
ELSE TS-DATA(8,T);

0 IJSAY(T) =IF T)LAG
THEN UISACIT) + UMAWC) + UISAOP(T) + IJSAX(T) - USAM(T)
ELSE TS-DATA(18.T);,

END USAM;
END rUS;
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A2.4 THE JAPAN MODULE

MODULE: JAPAN:
'ORCE: IIJAPAN, TSDJAPAN, CTRJAPAN;
TARGET: OIJAPAN,02JAPAN;

I IIJAPAN FILE CIRO MAIL, /* SENT FROM THE WORLD MODULE */
2 IIR(*) RECORD,
3 PROCID FLD (CHAR 14), i* ADDRESS SENT FROM THE WORLD */
3 (WT$,PW$,PM$I)

ARE FL (DEC FLOAT(15)):

END. IIR(T)=T=SIMPD:

1 CTRJAPAN FILE, 1* THE CONTROL PILE ,/
2 C.R RECORD,
3 STARTYR FLD (PIC '999'), /, STARTING YEAR OF SIMIJLATION *1
3 LAG FLD (PIC ,o'), /* LAG FROM THE STARTING YEAR *1
.3 SIMPD FLD (PIC "9'), /* SIMILATION PERIOD. *!

2 121R RECORD,
3 DHD FLD (CHAR 109),

2 12(*) RECORD, /* LOCAL HISTORICAL DATABASE 4/
3 HDYR FLD (CHAR 4),
3 (JAPGP,XS$IMS$1,DlJM,JAPR)

ARE FLD (PIC'BB(1O)-9V.(7)9');

I TSDJAPAN FILE,
2 IR(1:I8) GRP,
3 HDR RECORD,
4 HDD FLD (CHAR 21),

3 TR(IO) RECORD,
4 TS-DATA FLD (PIC'BB(IO)-9V.(7)Q');

I OIJAPAN FILE ORO MAIL, /* SEND TO WORLD MODULE 4/
2 OIR(*) RECORD,
3 MAILADR FLD (CHAR 10), /* GIVING WORLD MODULE THE RETURN ADR /
3 (M$1,PXShX$I,.JAPPY,JAPY,JAPR)

ARE FLD (DEC FLOAT(15)}'

lAILADR=' IIJAPANS:

I 02.APAN FILE, /* LO AL RESLLTS 4/
3 RD RECORD,
4 HFD FLD (CHAR I3),

3 BLKO RECORD,
4 FO FLD (CHAR 80),

*, VALUES GRP.
4 END..HD RECORD,
5 ENDHDD FLD (CHAR 124),

4 BKKI RECORD,
5 BKFI FLD (CHAR 80),

4 NAMESI RECORD,
5 NMI FLD (CHAR 132),

4 BLKI RECORD,
5 FI FLD (CHAR 132),

4 VALUESI(1:1O) RECORD,
5 YEARI FLD (PIC '9999').
5 (OM$I,OPXSI,OX$I, APPY.OJAPY,,.IAPM,JAPX')

ARE FLD(PIC'BB(7)-9V.(A)9'),
4 BKK2 RECORD,
5 EF2 RF.D (CH'A :O),

4 NAMES2 RECORD,
5 NM2 FLD (CHAR 132),

*,
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'C4 BLK2 RECORD.
5 P2 PL (CHAR MR2),

4 VALLES2(1*10) RECORD-
5 YEAR2 PLO (PIC '999'),
5 tJAPXJAPI,JAPC,)ARE FLO(PIC'BB(7)-9V.(6)9').

4 8KK3 RECORD,
5 BKP3 PLO (CHAR 80),

4 EXDJ4D RECORD,
5 EXD4Efl PLO (CHAR 124),

4 EXD_.B RECORD7
EXkPF FLO (CHAR 124)

4 NAMlES3 RECORD,
5 NM3 PLD (CHAR 1321,

d BLKS RECORD.
35 FU L (CHAR 132).

4 VALLUES3,(1:10) RECORD,
5 YEAR? PLO (PIC '99<j,
5 (OWT$,OPU$,OPtfll,OJAPR.OJAPGP3,OXS$1,,O$1'

ARE PLD(PIC'BB(7)-WV.(6)9').
4 BKK4 RECORD.
5 BKF4 PLO (CHAR SO).

4 NAIIES4 RECORD,
5 N114 PLO (CHAR 132),

4 BLK4 RECORD,
* .5 F4 PLO (CHAR 13),

4 VALUES4(1) RECORD,
5 VEAR4 PLO (PIC 'Q9)
5 (00(31')

ARE PLD(PJC'BB(7)-9V.(6)9');

ENDAHDD:=COPV( ',42)!:'E N DO0G E N G US V A R I A B L E3'
EXD-HDD=COPY(' ',42)flE X 0 G E NO0 U S V A R I A B L E S';
(END.VALUES1(T),END.VALUES2 (T),END.ALLIES3(T) ,END.YALUES4(T) )=T=SIM-.PD;,

OfmPM$N$1

rJAPPYZJAPPY;
C. APY=.JAPY*;

- JAP--zJAPGP;'

oxSsi2XS$i;
ODLII4LRI;

i4PRWCTRJAPAN. JAPR;

(VEARI (T), YEAR2M, YEAR3(T), YEAR 4(T) hS3TARTSYR4P
* PO,F1,F,P3,F4,BKP1,BKF2,BKF3,BKP4,EXD-F)='

*HPDCY(' :.45)H:'LOCAL SINLLATION REPORT FOR: JAPAN':
NMI 'YA JAY W' ARM

.JAPP JAP
* N>YER JAP 'H' JANM

::' jAPr '

NM*7' 'YEAR JP '8' PI
:l JAPR

PM$l II, JP
JAPI3P ''' KSSI

NM4t-.YEAR 0(311'

T SIIiSCRIFT;
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U BLOCK JAP: MAX ITER IS 20, RELATIVE ERROlR IS 0.01:'
11R(T)=DEPENDSLIN(01R(T));
INITIAL.WTS(T)=IF T(=LA, THEN TS-DATA(4,T)

ELSE WT$(T-1);
INITIAL.PW(Th=IF T@=LAO THEN TS.DATA(5,T)

ELSE PWfl(T-1);,
INITIALPMSIT)=IF T@=LAO THEN TS.DATA(6,T)

ELSE PM$1(T-1);P

1---------- THE JAPAN MODEL (FROM: YASUDA, LINK PROJECT------ /

BLOCK JAPAMD: MAX ITER IS 20, RELATITVE ERROR I S 0. 01:

M$1(T) IF T).LAGi
THEN -2412.7034 + 0.08578 * JAPY(T)*i.001/357.4,*1000.P

+ 0. 1036 * MWlT-tI
ELS,-E TS-DATA(1,T):

JAPM(T) = IF D)LAG
THEN (N$lIT) + MS$1(TI)/1000./ (I. / 357.6)
ELSE TS.DATA(7,T);

JAPPYCT) =IF T)LAO
THEN 0. 1437 + 0.5280 * JAPY(T)/70613.3' +

0.3490 * PMI!(T)*CTRJAPAN.JAPRCT) /357.6
ELSE TS-.DATA(8,T):

JAPPYIT) =IF T)'LAG
THEN 0.276 + 0.3126 * JAPPY(T) +

0.4104 * PU%(*TRJAAN. JAP9(iT1I1/357. 6
ELSE TS..DATA(9,T);

PXSI(T) IF TYLAOj
THEN -0.04544 + 1,0691 * JAPPX(T)ICTRJAPAN.JAPR(T)*3,57,6
ELSE TS.DATA(10,T);

XlI(T) =IF T)LAO
4 THEN 9397.7628 + 0.06519 * UTS() + 0.2933 * $I(T-i)

-15589.5870 * PX$IIT)/PJ$(T)
ELSE TS-DATA(2,T):,

JAP'I(T) IF T)/L~
THEN (XlI(T) + XSSI(T))/1000./ (I. / 2:57.6)
ELSE TS2ATA(11,T):

*JAPI(T) IF T hAO
THEN -5141.2522 + 0.452,n JAPYIT) - 3652.4761 * LIT)
ELSE TS..DATA(12,T):

JAPCIT) IF T)LAO
THEN 2161.6489 + 0.23 82 * JAPYIT) + 0.5245. *1 JACIT-))
ELSE TS..DATA(3,T):

JAPYIT) IF T)LAO
THEN JAPC(T) + JAPIIT) + JAPf3PIT) + JAPXIT) -JAPM(T)

ELSE TS-DATA(13.T);

END JAPANMD:,
END JAP:
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( A2.5 THE TAIWAN MODULE

MODULE: TA! WAN:
SOLERCE: I1TAIWAN.TS[DTWN. CTRTWN.,
TARGET: O1TAIWAN,O2TAIWAN:

I IITAIWAN FILE ORG MAIL,
2 IIR(*) RECORD.

3 PROUID RE' (CHAR 14),
3 (WTS.PW$,PM$3)

ARE FLD (DEC FLOAT(15)):

END. I1R(T)=T=SIMYPD;

TSDTW4N FILE,
2 IR(1:18) GRP,
3 HOR RECORD,
4 HDD FLD (CHAR 211),

3TR(lO) RECORD,
4 TS..DATA FLD (PIC'BBQlO)-9 (7Qfl

I CTRTWN FILE, /* THE CONTROL FILE *
2 CR RECORD,
3 STARTJYR FLD (PIC '999'), 1* STARTING YEAR OF SIMLATION *
3 LAG FLD (PIC /9/), 1* LAO FROM THE STARTING YEAR
3 SIM-PD FLD (PIC '9') * SIMULATION PERIOD. *
2 12R RECORD.

?DHD FLD (CHAR 88).
2 IYR(*) RECORD, 1* LOCAL DATABASE *
31 HDYR RLD (CHAR 4),
3 (TWNGP. X5'3,MS$3,TWNR)

ARE FLD (PIC'BB(1O)-9Y.(7)9');

1 QITAIWAN FILE ORG MAIL,
2 O1R(. RECORD,
3 MAIL-ADR RLD (CHAR 10),
3 (M$3,PX$3,X$3,TWNPY,TWNV,TWNR)

ARE FLD (DEC FLOAT(15));

MAIL-ADR=' I ITAIWANS';

* I 2TAIWAN FILE, /* LOCAL RESULTS
3HD RECORD.
4 HF) FLD (CHAR 132),

3 811(0 RECORD.
4 FO FLD (CHAR SW)

3 VALUES GRP,
4 END..HD RECORD,

5 ENDYHDD FLD (CHAR 124),
* 4 810(1 RECORD,

9 8KFI RLD (CHAR SO),
4 NAMES! RECORD.

5 NMI FLD (CHAR 132)
4BLK1 RECORD.
5F! RD (CHAR 132).

4YALUES11: 10) RECORD.
5 YEAR! FL) (PIC '99)

* 9 (O"t3,OPX$3,OX$3,OTWNPY,OTWNY,TWNM,TWNPX)
ARE FLD(PIC'BB(7)-9V4(6)9'),

4 BKK2 RECORD.
9 BKF2 FLD 'LCHAR 80),

4 NAMES' RECORD, _

5NM2 FLD) (CHAR 132).
4 811(2 RECORD.

5F2 FLDl (CHAR 132).-

4SArE2(:1)Rc'D
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rl 5 YEAR2 FLU (PIC '9999'),
5 (TWNX,TWNI,TWNC,)

ARE FLD(PIC'BB(7)-9V. (6)9'),
4 BKK3 RECORD,
9 BKF3 FLU (CHAR 80),

4 EXD-HD RECORD,
5 EXDJ4DD FLU (CHAR 124)7

4 EXO.B RECORD,
5 EXD-F FLU (CHAR 124),

4 4 NAMES3 RECORD,
5 Nti3 FLU (CHAR 132),

4 BU(3 RECORD,
5 F") FLU (CHAR 132),

4 YALUES3(1:1O) RECORD,
5 YEAR3 FLU (PIC '99W),~

5(OWT$,0IPW$,OPM$3.OTWNR, OTWNGP,OXS$3,OMS*$3)
ARE FLD(PIClBB(7)-9V.(6)9'):

END-HID=C0PY(' 1,421::'E N DOG E N 0 UJ S V AR I A BL E
EXD-HDD=CP( ',2)::'E X0 NDS VRIAL
(END.VALUESI(T) ,ENO. VALLES2(T),END.VALUES3 (T) )=T=SIM-PO;

LIWT$=-WT$;
OPW$=PW$;
ClPM$3*t1$3*

* OIM$3=fl$3;,
OPX$S=PXS3;
OX$3=($3;3
OTW~NPY=TWNPY;
CTWNY=TWNY;
i)TWNGP=TW.NGP,
OXS$S XS$3;
omq-MS3*I13
OTWNR=::TRTWN. TWNR;

(YEARI(T),YEAR2(T),YEAR3(T) )=START.YR+T:,
(FO,F1,F2L,F3,BKFI,BKF.2,BKF3,EX-F)=I
H4FD lCOPY(' '.45):'LOCAL SIMUJLATION REPORT FOR: TAIWAN'
NMI='YEAR M$3 :'I FX$3

X$3 ''' TWNPY
TWNY ' TNI

TWNIPX
00NM2='YEAR TWNX 2' TWNI

fl'NC '

NM3=-YEAR WTS 2' PW$
PM$3 TIJNR
TWNGP 2' XS$3
r3$3

T SUBSCRIPT;

BLCK TWN: MAX ITER IS 40, RELATIVE ERROR IS 0.01%

IlR(T)=DEPENDS-ON(OIR(T));

!NITIAL.WT$(T)=IF T(ALAG THEN TS-.DATA(4,T)
ELSE WTS(T-1)*

INITIAL.PI(T)=IF T<=LAr THEN TS-.DATA(5.T)
ELSE PWI(T-1):

[NITIAL.P"s3T)=IF T(=LAG THEN TS-.DATA(/,,T)
ELSE PMS3(T-1)'

tTHE POLLOWK3 EQUATIONS ARE PROVIDED BY MR. YASUDA, LINV PROJECT, JQ ,4 *

BLOCK TMIWAN#1D: MAX ITER IS 46, RELATIVE ERROR TS 0.0Q*
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M$3(T) IF T)LAO
THEN -296.7472 + 0.3144 *TWNV(T)0.967M4. 100000 +

0,5442 * M$.3CT-1)
- 59.13 * Pf$3(T).CTRTWN.TWNR(T)/40.100c(Ki0

ELSE TS-DATA(I,T);

TWNM(T) IF T)LAG
THEN (N$3(TJ *rSS(T)l)* 40.1/0.0611
ELSE TS.DATA(7,T);

TWNPY(T)= IF T)LA3
THEN 0.038 + 0.2889 * TINY(T)1261558.0 +

0.6616 * PM$3,(T)/1.037*CTRTWN.TWNR(T)/40.1
ELSE TSJJATA(S.,T);-

TWNPICT): IF T)LA3
THEN 0. 1513 + 0.2915 * TIIJPV(T) +

0.5-853 * PIS(T)/1.044*CTRTWN.TUNR(T)/40).1
ELSE TS-DATA(9,T);

RO$3T) =IF T)LAO
THEN 0.05012 + 0.9712 * TINPX(T)/0.9744/CTRTI&.TWNR(T)*40.1
ELSE TS-DATA(10,T);,

X $3(T) =IF D',L#3
THEN -2.1007 + 0.00403-5 *WTS(T + 0.8766 *X$3(T-1)

-687.1323 * PX$3(T)
ELSE TSJIATA(2,T);

TUNX(T) = IF T)LAG
THEN (X$3(T) + XS$.3(Tfl'40.1/0.9744
ELSE TS..DATA(II,T):,

TIJNI(T) =IF T>LAO
THEN -23803.1810 + 0.3534 *TWNY(T)
ELSE TS-.DATA12,T),

TWNC(T1 = IF TYLAG
THEN 10145.745 + 0.3091 *TWrNYIT) +0.3276 *TUNC(T-1)

ELSE TS-DATA(3,T);,

TNYflT) = IF T)LAO
THEN TIEC.T) + TWNI(T) + TWNOP(T + TI#4X(T - TINM(T
ELSE TS-DATA(13,T);

END TAIWANMD;
END Till;
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34 A2.6 THE KOREA MODULE

MODULE: KOREA;
3Ct-ICE: I 1KOREA, TSDKOREA, CTRKRA;
TARGET: OIKOREA,O2KOREA;

I II<OREA FILE ORG MAIL,2 IIR(*) RECORD,
3 PROUD FLO (CHAR 14),:3 (WT$, PWS,PM$41

ARE FLD (DEC FLOAT(I5));

END. IIR(T):=TSIMPD;

I TSDIOREA FILE,
2 IR(1:18) GRP,
3 HDR RECORD,
3 HD FLD (CHAR 21),
3 TRIO) RECORD,
4 TDATA FLO (PIC'BB(H)-AR.1(7)0'9)

i I CTRKRA FILE, /* THE CO)NTROL FILE *

2 R RECORD,
3 ST TYR FLD (PIC 9 ), /, STATING YEAR rjF $1M.ATION
3 LAG FLD (PIC '91k, R * LAG FROM TE STARTING YEAR
3 SIMPD FL (PIC "') , (,SIMULATION RID.

2,' 12IR RECORD,
3 HDH FLD (CHAR 109),2 JI2M* RECORD, I* LOCAL DATABASE ,
3 HYR FLO (0liAR 4),

3 (KRAGP,XS$4, K$4,JM,YKRAR)
ARE FLO (PICBB(O)- .(7)9)

I OIKOREA FILE L O MAIL, R
3 HIR) RECORD,
3 MAILADR FL (CHAR 10),
3 (M$4,PX$4,X$4,KRAPYKRAY,KRAR)

ARE FL (DEC FLOAT(15))"
MAILARI I KOREASI:{

t 3XOREA FILE, /* LOCAL RESULTS I
3 ND RECORD,
4 HFD F LLD (CHAR 12),

3 BLKO RECORD,
4 FO FLO (CHAR 80),3 VALUES GRP,

4 ENDA RECORD,
5 ENDHD FLO (CHAR 124),

4 BKKI RECORD,

4 NAMESI: RECORD,
5 NMI FLD (CHAR 92),

4 BK RECORD,
5 KF FLD (CHAR 132),

4 VALUES(:10) RECORD,
5 YEARI FLD (PIC 132),5 (0M$4, OPX$4,OX]$4, OKRAPY, OKRAY, KRAM KRAPX I

ARE FLD(PIC'BB(7)-9V.(6)o'), .
4 8KK2 RECORD,5 B0F2 FLO (CHAR 80O), .
4 NAMES" RECORD,
5 NM2 FLO (CHAR 132),

4 BLK2 RECORD,

.F2 FLO (CHAR 132),
4 VAUJES2(1:10) RECORD,

t.S
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5 ('.RAX,KRAIKAC;
ARE FLD(PIC'BB(7)-QV.(6)9'),

4 BKK3 RECORD7
5 BV.F3 FL]) (CHAR SO).

4 EXDJID RECORD,
5 EXODD FL]] (CHAR 124),

4 EXDJB RECORD,
5 EXUSF RD (CHAR 124),

4 NAMIESS RECORD,
5 MI3 FLD (CHAR 132).

4 BU<3 RECORD,
5 F3 RLD (CHAR 152),

4 VALLES(1:1O) RECORD7
5 YEARS FL]] (PIC '9Q99'),
5 (OWT$,OPjfl,0pt4,OKRAR,OKRAGP,0X91.S$4 )

ARE FLD(PIC'BB(7)-9)V.(6)9'),
4 BVX4 RECORD7

5 BKF4 FL]] (CHAR 830),
4 NAMES4 RECORD,
5 NM4 RLD (CHAR 132),

4 BLK4 RECORD7
5 F4 RLD (CHAR 132),

4 VALIES4(1:1O) RECORD7
* S5 YEAR4 FL]] (PIC '9999'),

5 (ODWt)
ARE RLD(PC'BB(7)-9V.(6)9')*:

ENDJIDDCOPY(' ',42)::'E N DOG E NO0 U S V AR I A B L E S':
EXDJ4DD~2OPY(' ',42:'E X 0 6 E N 0 U S V ~ AR I A B L E S':
(END. VALUIESI(T),END. VALUES2(T),END.VALIUESS(T),END. VALUES4(T )=TSI-PO,

OIT$'T$;

OPM$4=-PM$4;,
Ot1$4tWX4;
OX$4=X54;'
OKRAPY=-KRAPY*
CU(RAY=KRAY;
'JKRAOP=KRAGP;
OXS$4=XSI4;
OMSSI4#1S4;
OLJM=M;,
OKRAR=CTRKRA. KRAR;

(YEARI(T),YEAR2(T),YEARS(T),VEARA(T))=START-YR+T;
(FO,FI,F2,F3,F4,BKF1,BKF2 ,BKFS.E4F4EXDFh' ':
HFD=-COPY(' ',45)::'LOCAL SIMATION REPORT FOR: KOREA:

* NMlr'YEAR W5 i'U' PX$4
X$4 t." VRAPY

KRAV 2: KRAM
KRAPX

NM2='YEAR KRAX v k'RAI
KRAC

,h13='YEAR WTS '2'l MU
0WPMtS4 '' KRAR

VRAOP 2: XSS4

NMWzYEAR DUN'

T ',JJBKCRIPT;,

BLOCK KRA: MAX ITER IS 20. RELATIVE ERROR IS o.01:

0A
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IIR(T)4DEPENDS-ON(OIR(T))%

INITIAL.WTS(T):IF T(-LAG THEN TS-DATA(4,T)
ELSE WT$(T-1);

INITIAL.PJ(T)=IF T<@LAG THEN TS..DATA(5,T)
ELSE PW$(T-1);

INITIAL.PM$4(T)=IF T(-LA THEN TS..DATA(6,T)
ELSE PM$4(T-1);

I. THE FOLLOW'ING EUTIONS ARE PROVIDED BY MR. VASUDA. LINK PROJECT, 1984 *

BLOCK KOREAND: MAX ITER IS 20, RELATIVE ERROR IS 0.01;

M$4(T) =IF TP.LAG
THEN -1159.2639 + (0.3119 * KRAV(TlNIOOO)f/316.0000000 +

(480.3403 * KRAPY(T)/Pl4(T)
*316.0000004)) !CTRKRA. KRAR (T)

ELSE TS-DATA(I,T);

KRAM(T IF T)LAG
THEN (F $4(T) + MS4(T)lhIOOO.0 * 316.0
ELSE TS-DATA(7,T);

*KRAPY(T)= IF T)LAO
THEN -0.2485 + 1.0527 * KRAY(T)2577.36 +

(0. 1906 * P $4(T)*CTRKRA.KRART)/316.0
ELSE TSDATA(8T);

KRAPX(T)= IF 1'YAG
THEN 0.29"1 + 0.25450 * V.RAPY(T) +

(0.4680 # PW$(T)*CTRKRA.KRAR(T))1316.O
* ELSE TS..IATA(9,T),

PX$4(T) =IF T)LAG
THEN -0.07560 + (1.0245 * KRAPX(T)*316.0)/CTRK.RA.KRAR(T)
ELSE TS.DATA(1O,T);,

* 316 IS MOVED TO BEFORE DIVISION *1

X$4(T) =IF T)AO
THEN 462.5595; + 0.004081 * WT + 0.748S X$4(T-11

-(1268.9005 * PX$4(T))/PJ$(T)
ELSE TS-DATA(2,,T),

KRAX(T' 'F T)LAG
rifN (X$4(T) + XS$4(T)lhlOOO.0 * M1.0
ELSE TS-DATA(11,T):'

KRAI(T IF TY-LA3
0 THEN -225.8597 + 0.314 * KRAY(T)

ELSE TS-.DATA(12,T)'

KRACMT IF T)LA6
THEN 38.6775 + 0.1874 *KRAY(T) + 0.7832 *KRAC(T-1)-

115.1801~ * EDJM(T
ELSE TS-DATA(3,T)!

0 KRAY(T) IF T)LAG
THEN KRACT) + KRAI(T + KRAI3P(T) +KRAX(T) - RAM(T)
ELSE TS..DATA(13.T);

END KOREAMO;
END KRA,
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A2.7 THE PHILIPPINE MODULE

MODULE: PHILIPPI:
SOURCE: IIPHILTSDPHIL, CTRPHIL;
TARGET: O1PHIL,.PHIL;

1 IIPHIL FILE ORG MAIL,
2 IIR(*) RECORD,

3 PROCJD FD (CHAR 14),
3 (WT$, PPMf5)

ARE FlIt (DEC FLOAT(15));

END. IIR(T)=TWSIMPD

TSDPHIL FILE,
2 IR(1:18) ORP.
3 HDR RECORD,
4 HOD FLD (CHAR 21),

3 TR(1O) RECORD,
4 TSDATA FLD (PIC'BB(1O)- .(7)9'):

I CTRPHIL FILE, /* THE CONTROL FILE ,1
2 CR RECORD,

3 STARTYR FD (PIC '9999'), f* STARTING YEAR OF SIMULATION */
3 LAG FD (PIC '9'), I* LAG FROM THE STARTING YEAR */
3 SIMPD FD (PIC /99'), /* SIMULATION PERIOD. ,/

2 121R record,
3 DHD FLO (CHAR .98),

2 I2R(*) RECORD, I* LOCAL DATABASE ,/
3 HYR FlD (CHAR 4),
3 (PHIGP, XS$5,MS$5,PHIR)

ARE FLD (PIC'8B(tO)-9V.(719''i;

I OIPHIL FILE ORG MAIL,
2 OIR(,) RECORD,
3 MAIL..ADR FD (CHAR 10),
3 (M$5,PX$5, X$5,PHIPYPHIYPHIR)

ARE .LD (DEC FLOAT(15));

MAILAOR=-' I IPHILS';

I 02PHIL FILE, I* LOCAL RESULTS V
3 HD RECORD,

4 HFD FLD (CHAR 132),3 BLKO RECORD,
4 FO FD (CHAR 80),

3 VALUES GRP,
4 ENDHO RECORD,

5 END-HOD FD (CHAR 124),
4 BKI RECORD,
9 BKFI FD (CHAR 80),

4 NAMESI RECORD,
5 NMI FLD (CHAR 132),

4 BKl RECORD,
5 F1 FD (CHAR 132),

4 VALUESI(l: 10) RECORD,
5 YEARI FD (PIC '9 '),
5 (O.$5,OPX$5,OX$5,OPHIPY,OPHIY,PHIM,PHIPX)

ARE FD(PIC'BB(7)-9V.(6)9'),
4 BK2 RECORD,

5 BKF2 FLU (CHAR 80),
4 NAMES2 RECORD,

5 NM2 FLD (CHAR 132),
4 BLK2 RECORD, t

5 F2 FD (CHAR 132),

o i
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4 VALUES2(1:1O) RECORD,
5 YEAR2 FLD (PIC '9919,
5 CPHIX,PHII,PHIC)

ARE RD(PIC'8B(7)-9V. (6)9'),
4 BKK13 RECORDS

5 BKF3 RLD (CHAR 80),
4 EXD.J4D RECORDS

5 EXDJ4DD RLD (CHAR 124),
4 EXDJB RECORD,

5 EXDSF RD (CHAR L24),

5 YEAR D (C '932 ),

5 (OWT$5OPWS,ORVs5,(iPHIR,oJPrp,OXS$9,pMS$5)
ARE FLD(PIC'88(7)-9V.(6)9'):

END..HDD:COPY(' ',421::'E N DOG E N U S V AR I A B LE S':
EXDYHDD=COPYC' '.42):!'E X 0DOE NO0 U S V AR I A B L ES':;
(END.VALUES1 CT) .END.VALUES32(T) END.VALUE3TP T=SIM.PD;

c)WT$-IWT$;
4 OPIJ$=PW$;

)M1PX$A5M$P"'$PX,

PHIY 'H' PI4IM
n-PHIPX IP

(YEA3I'T),YEAU2TS 'H'T)-,TATYRT

NI'EmR MSSS I'

T SUB9RIPT

WLC1 PHI: M X I S2"RLTV RO S00;:

NM3-ELSEA WTS(T-1)
ELS P"5 iM(T-1);

INITIAL.PMSS(T)=IF T(LAO THEN TS.DATA(,T)

ELSE PN$(T-1):

* * THE FOLOWING EQUATIONS ARE PROVIDED BY mR. YASIJDA, LINK PROJECT. JQ84
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BLOCI( PHILMD: MAX ITER IS 20, RELATIVE ERROR IS 0.01;,

4$5(T) = IF T)LAG
THEN -491.7211 + 0.1231 * PHIY(T).1.257

/5.7290 + 0.5040 * M$5(T-1)
+ 258.14210 * PHIPY(T)f1.2570
/PM$5(T)*5.7290/CTRPHIL.P{IR(T)

ELSE TS-DATA(1.T);,

PHIM(T) IF T)LAG
THEN (M$5(T) + MS$5(T))*5.729/1.586
ELSE TS.DATA(7,T);

PHIPY(T)= IF T)LAG
THEN 0.1296 + 0.3945 * PHIY(T)/2915.0 +

0.4552 * PM$5(T)/0.9140 *CTRPHIL.PHIR(T)/3.Q
ELSE TS-DATA(8,T),

PHIPX(T)= IF T)LAG
THEN -0.75110 + 1.8239 * FHIPY(T)
ELSE TS.IjATA(9,T);

PX$5(T) IF T)LAG
THEN -0.02Z3M + 1.0404 * Pt4IPx(T)/1.7cS7ICTRP4IL.PI4IR(T)*5.7Q(

* ELSE TS-DATA(10.T);

Y$5(T) IF rT.LAG
THEN 1006.1559 + 0.001548 * WTS(T) + 0.3555 * X$9(T-1)

-816.6783000 * PX$5(T)/PW$(T)
ELSE TS-DATA(2,T);

PHIX(T) IF T)LAO
THEN (X$5(T) + XS$5(Tfl'5.72,9/l.757
ELSE TS..DATA(11,T);,

PHII(T) IF T)LAG
THEN -3244.7515 + 0.3101 *P 41Y(T)
ELSE TS-DIATA(12,T)t

PHIC(T) IF TMAG
*THEN 692.48642 + 0.08436 4PH4IY(T) + 0.8906 *PHIC(T-1)

ELSE TS-DATA(3.T)*;

PHIY(T) IF rLAG
THEN PI4ICCT) + PHII(T) +PHIGP(T) +P14IX(T) - PHIM(T)
ELSE TS-DATA(13,T);

END PHILMD;
*1 END PHI*,

0
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ii' A2.8 THE THAILAND MODULE

MODULE: THAILAND;
30OURCE: IITHAITSDTHAI, CTRTHI;TARGET: OITHAI,O2THAI;

I IITHAI FILE ORG MAIL,
2 IIR(*) RECORD,

3 PROCUD FLD (CHAR 14),
3 (WT$PW$,P$6)

ARE FLD (DEC FLOAT(15)):

END. I1R(T)=Tr3IMPD;

I TSDTHAI FILE,
2 IR(1:18) ORP,
3 HDR RECORD,
4 HBD FLD (CHAR 21),

. TR(IO) RECORD,
4 TSDATA FL (PIC'BB(lO)-9V.(7)9'"t

1 CTRTHI FILE, /* THE CONTROL FILE */
2 CR RECORD,

3 STARTYR FLD (PIC '/f99'), /, STARTING YEAR OF SIMULATION *1
:3 LAO FLD (PIC '9'), / LAG FROM THE STARTING YEAR *
3 SIM-PD FLD (PIC ' "), 1* SIMULATION PERIOD. */

2 121r record,
.3 DHD FLD (CHAR 88),

S12R(*) RECORD,
31 LIYR FLD (CHAR 4),
.3 (THIOP,XS$6,MS$6,THIR)

ARE FLD (PIC'BB(1O)-9V.(7)91;)"

I OITHAI FILE ORO MAIL, /, SEND TO THE WORLD MODULE ,I
2 OIR(*) RECORD,

3 MAILADR FLD (CHAR 10),
. (M",,PXS6,X$6,THIPY,THIY,THIR)

ARE FLO (DEC FLOAT(15));

MAILADR-" I THAISII

I 02THAI FILE, /# LOCAL RESULTS *1
3 HD RECORD,

4 HFD FLD (CHAR 132),
3 BLKO RECORD,

4 FO FLD (CHAR 80),
3 VALUES GRP,

4 END-HD RECORD,
5 END-HDD FLD (CHAR 124),

4 BKKI RECORD,
5 BKF1 FLD (CHAR 80),

4 NAIES1 RECORD,
5 NMI FLD (CHAR 132).

4 BLKI RECORD,
5 F1 FLD (CHAR 132),

4 VALUESI(1:10) RECORD,
5 YEARI FLD (PIC '999'),
5 (Ct$6,OPX$6,OX$6,OTHIPY,OTHIY,THIM,THIPX)

ARE FLD(PIC'B8(7)-QV.(6)9'),
4 BYK2 RECORD,

5 DKF2 FLD (CHAR 80),
4 ,AMES2 RECORD,

5 NK2 FLD (CHAR 132),
4 BLK2 RECORD,

5 F2 FLD (HAR 132).
* 4 VALUES2(I.1O) RECORD,
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Y5 YEAR2 FLD (PIC 99')
5 (THIXITHII.THIC)

ARE FLD(PIC'BB(7)-9V. (6)9'),
4 BKKS RECORD7
5 BKF3 FLO (CHAR 80),

4 EXDJ4D RECORD,
5 EXDJ4DD RLD (CHAR 124),

4 EXD..B RECORD,
5 EXD..F FLU (CHAR 124),

4 NAMES3 RECORD7
.5 NMtS RD (CHAR 132).

4 811(3 RECORD,
5 F3 RLD (CHAR 132),

4 VALLES3(t:1O) RECO -9.
5 YEARS FLD (PIC'9 9'
F (OWT$,OPW$,OPPIS6,OTHIR,ATHIPP,OIXS$6,ONS$6)

ARE FLD(PIC'BB(7)-9V.(6)9')1

END-HDD=COPY(U ',42'E N DOG E N u S V AR I A BL E3:
EX&-HDDCOPY(' ',42)::'E X 0 0 E N 0 U S V A R I A B L E S';
(END. VALUESI(T),END. YALIJES2(T)hEND. VALUESSIT) )zT--SIMyPD;

OWT$--WTS;

* OPN$6#PM$6;
ONM$6=N$6;
OPX$6=-PY"
OX$&:=X$6;
OTHIPY=THIPY;
OTHIY=THIY;
ITHIGP=THI, uP;
OXS$6=XS$6;
0MS$6=MS$6;
OTHIRWrTRTHI. THIR;

(YEAR1(T).YEA~R2(T)JYEARS(T) )=STARL-YR+T;,
(FOFI,F2F3,BKF1.BKF2BWF3,EXDYF)=' '
HFD~rCOPY'I '.45)1'LOCAL SIMULATION REPORT FOR: THAILAND':
NM1='YEAR M$6 i: PX$6

W X$6 1W THIPY
6 W THIY '' THIN

THIPX '
NM2&-YEAR THIX /:,I THII

W' THIC

NM3='YEAR WT$ 'U' P14
WPIIS6 1W THIR

THIOPHIG ' XS$6
WMS$6

T SUBSCRIPT;

BLOCK THI: MAX VEER IS 40. RELATIVE ERROR IS 0.01:

* IIR(T)=DEPENDS-ON(O1R(T));

INITIAL.WTS(T)=IF T(4LA0 THEN TS-DATA(4,T)
0 ELSE WT$CT-1);

INITIAL.PWS(T)=IF T(2LAG THEN TS.DATA(9,T)
ELSE PWfl(T-1);

INITIAL.PM$6(TW=IF T&-LAO, THEN TS..DATA(6.T)
ELSE PMtS(T-1);

/* THE FOLLOWING EUTIONS ARE PROVIDED BY MR. YASUD)A, LIN PROJECT, 1984 *

* BLOCK THAIND: MAX ITER IS 40, RELATIVE ERROR IS 0.01:
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W(tT) IF 'A-
THEN -20.468A + (0.1252' THIV(T1II.1 0.33,50 * NAT-

+ 763.0320 *THIPY(TUI1.135
/PP46(T)/(TRTHI.THIR(T)*20.93M

ELSE TSjATA(j*

THIM(T IF T)LAO
TH0 (M6(T + NS$6(TP20.9"/1.(3
ELSE TS-.DATA(7.T):

THI4PY(T)= IF T)LAJ
THEN 0.42r92 + 0.07972 * THIVCT)/63793.0 +

0.4995 * PSA(T/l.S7.CTRTHI.THIR(TW/'tt:; 4
ELSE TSD-[ATA:3. T);

THIFX(T)= IF PLAO
THEN -0.2305 + 0.5310 * THI1PY(T) +

0.6188 * PW5(TU0Je' 73*CTRTHI.TW!R(T)/20('44
ELSE T&.fATAt9. T):,

PXV.(T) IF T)LAt3
THEN -0.06976 + 1.0885 * THIP1(T)f1.O)16/CTRTN4I.TRI R'l1*.2t
ELSE TS-DATA(10,T)i

X$6(T) IF TXAO
THEN 567.0480 + 0.0009513 * WTS(T + 0.5164 3 E6(T-11

- 416.5699 * PX$(T)/PWfl'P
ELSE TS-iATA(2L,fl:

THUM(T IF T)LAG
THEN (X$6(T) + XS$6T))20.93/1.016
ELSE TSJATA(11,T);a.

THII(T) IF T)LAO
THEN -3871.7198 + 0.2747 * THIY()
ELSE TS..DATA(12,T);

THIC(T) IF T)LAG
THEN 2903.0806 + 0.2.609 * THIY(T) + 0.6197 *THIC(T-I)

ELSE TS-DATA(3,T);

THIY() I F T) LAO

THEN THIC(T) + THII(T) + THIGP(T) + THIX(T) - THIN(T

END THAIN ELSE TSDATA(13,T);I

END THA
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A2.9 SIMULATION RESULTS

Il-.3
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A2.10 EXECUT7ION STATISTICS

SYS$SYSDEVICE: SHIIJAPAN. ACTi2

MODULE' JAPAN

Accounting infnrmation:
Buffered I/0 count; 294 Peak working set size' 234

Direct I/O counts 85 Peak rage file sizes 4185
Page faults; 737 Mounted volumes: 0
Elapsed CPU times 0 00,00828.13 Elapsed time' 0 000747.87

SYS$SYSDEVICE;(SHIKOREA.ACT:2

MODULE: KOREA

Accountins information
Buffered I/O counts 294 Peak working set size; 282
Direct 110 count' 74 Peak Pass file size: 4185
Page faults: 651 Mounted volumes: 0
Elapsed CPU time; 0 00100116.13 Elapsed time' 0 00:07:39.70

SYSSSYSDEVICE:[SHI]PHILIPPI.ACTI2

MODULE PHILIPPI

Accounting information:
Buffered I/0 count: 290 Peak working set sizes 287
Direct I/0 count: 78 Peak page file size: 3770

Page faults; 664 Mounted volumes: 0
Elapsed CPU time: 0 00:00120.40 Elapsed time' 0 00:07:36.35

SYSeSYSDEVICE:(SH3ITAIWAN.ACTS2

MODULE: TAIWAN

Accounting information:
Buffered 1/0 counts 290 Peak working set size: 287
Direct 1/0 counts 140 Peak rage file size' 3770
Page faultst 663 Mounted volumes: 0
Elapsed CPU times 0 00:00:21.19 Elapsed time' 0 00:07*38.10

SYS$SYSDEVICE:[SHI]THAILAND. ACT2

MODULE: THAILAND

Accounting information'
Buffered I/0 counts 290 Peak working set size: 286
Direct I/O count: 87 Peak pate file size: "4770
Page faults: 655 Mounted volumes: 0
Elapsed CPU time: 0 00:00:126.11 Elapsed time: ol ql07i-36.16

SYS$SYSDEVICE:SHI]USA.ACTI2

MODULE: USA

Accounting information:
Buffered I/O count: 295 Peak worl-ins set sizes 2$?
Direct I/0 count' 76 Peak pase file size: 41S5
Page faults: "48 Mounted volumes;

Elapsed CPU time: 0 00:00:18.28 Elapsed time: c; 1C:0-7:4.

SYS$SYSDEVICE:(SHIJWORLD.ACT:2

MOD1LE WORLD

Accounting informations
Buffered 1/0 count: 129 Peak working set size' 469
Direct I/0 count: 130 Peak rage file size' 414
Page faults: 1361 Mounted volumes; 0
Elapsed CPU time: 0 00:02:44.75 Elapsed time: 0 00t07:45.7S

I]
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APPENDIX B

ESNP OF CONCURWI'T MODEL

(MODELSPECIFICATION: -f(cMDEL ODYSTMTS2- /CLREP.RF/ *
/S1T4TFW <MODELSPECIFICATION2.

cMODELODYSMTS)2:.- /E(80)/
MODULE <MODULENAMEST~1T3
SOURCE <SOUREILESSTNT3,

I TARGET (TARGETFILESSTMTi,
2MX : cINTEE~ /STNAX/ (DIDCHM.

* END 61 /ENDINP/
I DCLDESCRIPTION.

* (BOWUEGIN).
< BIWOCEND3.
< OLDFILESTMT3.I/ASSINIT/ cASSERTIONSi. /STRHM1

<DtWESCRXPTION), ::- I /INTDCL/ /INTHVAR/ /MEINIT/
/SVMEM/ (DATASPEC).

C, /E( 109 )/ -CINTEGER), /CRDCL/ /INTM'1AR/
/MEKINIT/ /SVMEI (DATASPEC> J *

/STDCL/ iUIDfl=Ri-
<D&ASPEC> ::inCLNI4ARi (( 4(OCSPEC) ) C tIS>

cATI'RSPKC, /SVDCW
cATI'DSPEC> <: (ILE)- /SVF/ /SVFLN/ cFIIEDESIC3 <STORAGEDESC>

/STDEV/
(RVCORD). /SYR/
<PIEIDST14T> /STDPW/ /SVDf
C <GROUlPi-I /SVG/

* BLOWXEGINb BLO DCK /BLKINIT/ C <NE.% /SVLBL/ ] /E( 2)/
C <DWQ0CSPEC.% ] * /SVBW4K/ <ENDCHAR>

cBLOCSPEC.% c SOL[JrION> I(ITERM'ION), (,RELERROR)
cSOILUTIONi. C SOILTION I METHOD C tIS) 3 /E( 62)/ cMETHODS)

/SVMET/ c I I
cMETNODS3 - NEWTON I GALSSSEIDEL ' GS JACOBI
IlTERATIONb .: cMXMM <J3J4 ITER) C <IS> ] /E(4)/ (NUMfBER),

/SVITER/ I , I
0 dcMA)iM:: MAX IMAXIMUM

(ITER) o ITER IITEIRION ,ITERATIONS
<RELERROR). C: ( !RlATIVE ] <ERROR> ( cIS> ] /E(5)/ (NUMBER3.

/SVERR/ C , I
(ERROR) EM E 1R ERROR
cBLOCD) <EN(DD). /BLKZND/ ( (NAME) /CBXLBL/ I <ENDC!AR
(DID) :i /DIDID/
(ASSERIONS: :'/E(14)/CONDITIONAL I

* /SVASSR/ /INTMVMR/ <MVAJU, /ST4VAR/ /SVOI4Pl/
clS/SVNXOP/I (DDLORRHS)o

(CONDITIONAL) ::inIF /SVAAS1/ /SVOPl/ /SE'TBIT/ /EC 18)/
tBOOLEMIEXPRESSION). /SVOAP1/ /E( 38)/

TRWN /SVNXDP/ <SIMPLEASSERTION) /SVNXC4P/
(ELSE /SVtIXOP/ (ASSERTION> /SVNXCOIP/] /REIF/ /STALL/

0
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'cASERTION:: - /E(14)/ (CONDITIONAL) I <SIPLEASSEMTI0N)'4 DOLORWS): : /INTODDL/ (cDATADESCSnffP /PREELIM/
(AS~1I0HBRI /E( 33)/ c INTIOAS), (ASSERTIONERANCH), <ENDCHAR,
cASERl~BRAC)-: cDEFMRESSIONi,

IcBO0LJEVRRESSIONi,/SVNXO24P/ /STAI4/
cDEFURESSION).: :- (/INTSUD/ cVALUIELIST'3 ) /FREESUB/
(VALUELIST: :- (/CRSUB/ /DECPP/ cVALUELIST). (, (VALUELIST) I*

"'.CPP,
I 0PELDEW1'~i /STASS/

tOPUM4NT) jCSIGH)2 /SVIOPP/] sNUMER /STNUI4
,cSTRINWOR24M

c INTOAS).: :mi -INTOASS/
cSIW4LEASSERTIOH)----/SVASAEl/ /IW1"AVAR./ <NVJPP. /STKVAR/ /CCUNIK/

/SVC2IP1/ /'E( 23)/ - /SVWXOP/
<(BOLENWRESSION), /SVNXOAPi' iSTALL/ cENDCHAR)

<SU8VAhRIABLE3.: - /zsESUBV/ (VAR). iSVCDAVi' iSVC1P1/

<BOLENEPRESSION) /SVNXOA4Pi /SVCSUB/ (,/VXP
,cDO0LEANXPRESSION), /SVNXO4P/ /SVCCSUB/]

/2(24)/ ) I /CIAYSUB/ /STALL/
(SUBYARIABLEl3: :- /SETSUBV/ <VAR)- /SVOAP1/

((i'SVICOPi iSETBIT/ /E( 22)/
(DBOOLEANEXPRESSION)- /SVNXO4P/ (,/SVNXOP/
<DOOLEANXPRESSION)/SVNXOIP/ I

/E(24)/ ) I /STALL/
cDOOLEANEXPRESSION2.: : /E(982)/ /SVDE)P/ <CONDWI),

<8O ANT1EV4 /SVOEP1/
(-OR) /SVCODPi c BOOLEMVI'ERM) /SVNCAP/'I *
/STALL/

(CONDEXP)::-I? i'SVCOND/ /E( 3)/ <BOOLEANEXPRESSION). /SVOEP1/
/E( 79)/ TRWI /SJNXOP/ cDOOLEANXPRESS ION), /SVNXaCOP/
(/E( 12)/ ELE /SVNXOP/ DBOOLFAZ4U)PRESSION, /SVNXOAP/ I
/STALL/

cBOOLZAWTEM4: : /E(983)/ /SVBI1/ 4BOOLEANFACTOR- /SVCM1/
(.JSVNM~P/ DBOOLEANPACTOR> fSVNXO6P/] *
/STALL/

<D0OLZANPACTIOR : : - /E( 82)/ /SVBFX/ <CONCATENATION). /SVOl41/
(cRELATION). /SVNXOP/ <CONCATENATION). /SVNXC24P/I

/STALL/
<RELATION): -- /EL.EC/4 (C0NCATKTlON>?:m /E(94)/ /SVCON/ <ARITHEXP). /SVCMP1/

( CONCAT), /SVNXO2P/ <ARITHEXP i'SVNXOAP/ I
/STALL/

cCONCAT: - CATREC/

(TEM) /SVCP1/ (cOPS) /SVNXDP/ (TERM /SVNXOA4P/] *
/STALL/

(TENM2>: -- /E( 87)/ /SV1'EMA <PACTOR) /SVC1/
[<MOPS). /SVNDP/ (FACTOR), /SVNXO4P/]J* /STALW

(FACTOR)::-: /E(85)/ /SVPAC/ ( /SVOPl/] <PRIW.RY) /SVOEP1/
(C<MPON), /SVNXOP/ (PRIMARY)- /SVNXQE4P/] J * AL

tEXPOffj::- /EXPREC/
cPRfIARRY>: : /E( 86)/ i'SVPR13V (ISPRIM), /SVOEP1/ /STALL/
(ISPR.33)::- ( <DOOLLANEXPRESSION). /'(24)/)

I (NUDMR /STNUM/
I STRNGFOR34)-
I (FUNCTIONCALL)-
I SUDVARIABLEl).

(STRNG7RM):- '/SETSTRN/ ( <STRXNG3, /SVSTPJSG/ I
/2( 26)/

'/ADLEC/ ( B /STBIT/ /E(1)/ cBSUFXJ, /SThUI
(FUNCTIONCALL)::- <FUNCTIONNAHE) /STPJOI/

/SETFUNC/ (/SVNXOP/ <BOOLEANEXPIRESS ION).
/SVNaCOAPi I/SVNXOP/' DcOOLEANEPRESSION)

/VXH//STALL/
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( FUNCTIONNANE :: /FNCHECK/
(MYAR)b::- ( SUEVARIABLE)- /SV4VAR/

[, <SUBVARIABLE~b /SVMVAR/ 3*/E(24)/)
-CSUDVAIABLE> /SV4VAP./

(VAR) :- /SETVAP./ /INITQNM/ /E( 68)/ (HANK). /ADLEX/ /WKQNbV
C. /ADLEX/ /E( 68)/ (cNANE) /ADLEX/ /MKQNM/ 3* /STRCON/

(DCLMVAR)b <:(VAR> /SVCXWA/ /SVNYA./
C, (VAR)- /SVaoW/ /SVMVAR/ 3*)

(BSUFX>::- /BITSTR/
<QNANE):: /INITVIO /E(68)/ (NMNE). /MKQNDV

C( /E(68)/ <NAME /MKQWM
<STRING),:- <STRINGCOHST3)
<Ops): : /OPREC/
q(MOPS): - /MOPRECf
(TEST): :_/TESTBIT/

<MODLEN14ET14T, :- - /E(63)/- /E(64)/ (HAME)
/STMOD/ (ENDOIR).

cSOUCEILESSTMT):- (CFILEKEY1W)RD).] /E(75)/ /INITSFL/
cSOUREILELIST) /STSRC/ <E2IDCIAR)b

,(FILEXEYWORD).: -- FILES IFILE
cSOURCDFILKLrIST) .-- /E(76)/ <NME> /SVSRC/

C, /E(76)/ (MAN4E) /SVSRC/31
<TARGETFILESST1b: : - ((FILKYWRD>] /E(77)/ /INITI'FL/

(TARGETFILELI.ST)b /STI"AR cEND3R2.
cTAPtGTFILELIST),: :- /1(78 )/ cNM4E /5'JTAR/

C, /E(78)/ cNAM /5'JTAR/ 3
cDhTADESCSTNT).: - cDATADESCRIPTrION3) <ERDCHAR~
(DRTADESCRIPTION),: :

<IFILES1 TMT), /STFILE/
( RECORDST10), /STREC/
4GROr3PSTMvr /STGRP/
'cFrELDSW1') /STFW/
1-(SUBSTN!if /STSTJBST/

(SUBSTMfI): : -(SUBSCRIPT,-/N~DINIT/ /SVMAEM C( -cOCC.SPEC>
(SUBSCRIPT) ::- SUB I SUBSCRIPT ISUBSCRIPTS
(FILE):: -FILE 1, REPORT I FILES IREPORTS
cRECORDSTWI): (RECORD)- /ND(MINIT/ ((I cITEMLISTI)-(
( RECORD). : : -REC I RECORD IREOD
<ITDlMIST)::i /E(52)/cITEMN [(,] <ITEKb]*
(ITEK): : -<NME) /SVMEM / C ( NAME) /SVMEM/ 3* (( 4OCCSPEC) )

* (<OCCSPEC): : (STAR> /SVSTAB/ I cMINOCC>/SVMNOC/ (CMIMGCC 3]
(STAR):: /STARlREC/
XMINOCC>-:=<INTEGER),

cHAXDCC), : :/1(51)/J (INTEGER) /SVIXC/ /CIQUMX/
<INTEGER> /SWMC/ /CKIM2C/

<GROUPSTIET):: (GROUP)/ND(NIT/ [( <ITM4LIST> 1
(GROUP) :-- GRP 'GROUP 1, GROUPS
cFIELDSTMT)-: : (FIELD) /SVFLD/ <FIELDATM')-

* ((ONCND) (:3 /1(112)/cOPT)/SVOP/3
cOtND) > ONOWVERR ' ONCERR
<OPT),2: STOP , c(BINORNUM)

1(<SIGN)- /SVS/] (NUMBgER)-
CKIN)- -:-i/XIN/
(FIED)b : : - FW I FIELD I FIELDS
cFIEWAT").::in (] cT!PE> /SVF9 !P2/( (LENGSPEC)J]

[;44['LIESPC)_] ,](<COLSPEC3 (1
cLENGSPEC> :: 8)(4/ cHINLENGTH2 CcMAXLENGI'Hi- /E(49)/)

TVNW1H C d4RX 1 DIGTH)- 3
(MINLENGTH): :- (INTEGER) /SVDAFLN/
(LINESEC)? :- LINE /E(53)/ /E(54)/ /E(55)/ (<INTEGER> /SVLINE/)
cCOLSPEC)::in COLa /E(90)1 /E(91)/ /E(92)/ (cINTEER /SVCOL/)
<TYPE>-:- /E(47)/ <PICDESC) < STRINGSPEC> I NUMSPEC> < GENERIC),
(CERwC), : GEN), /SVGEN/

* <GEN4) : GENERIC IGEN
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cPICUESC)- 2= cPIC1'YPE) /E(67)/ /SVPIC/ < STRING) /SVPICST/]
/STPIC/

(PIC1'YPE):: PIC I PICT'URE
<STRINGSPEC>:: 2c STRINGT'YPE% /SVSTRTPI
cSTRINGTYPE).: :- CHAR 1, CHARACTER BIT N UM 1. NUMER.IC
cNUMSPEC>::- cNUNTYPE> /SVNUMfYP/ ( (FLT- /SVMOZD/
(NUWTPE::- BIN IBINARY I DEC 1DECIMAL
4FIXPLT)::= FIX F IXED IFL IFLOAT I FLT
(eMAXENG'H>:- <] INTEER /SVMXFLN/

/ 'E46)/ /SVINTGR)W/SCAE
I 1INTE6)R SIR/SV SCALE/

<SIIff=.: - - /E( 50)/ *INT'EGER) /NEGATE/ 1, INTEGER),
cNUMBER) ::- /SETNUl/ <INITNUM). /E( 65 )/ cRECNUM3-
cRECNUM>: :- /REOIUIV
(BIN) :-- /BIN/
(INITNUM,::- /INITNUUV
cSIGN>::- + 1-
(RECG>::in <RECORD). 1 <GROUP),
(KEY),::-KEY I SEQUENCE
cCODE>: :rEBCDICIBCDIASCII
(ANY>): (NAME)% I cINTEGER,
(NOTRKS)::in 719
(DUISITY>:i- 200155619001 160016250
(PARITY.: :- ODDIEVEN
<TYPEDSK,::- 2314123111333012305 1 3330-1

* (ORG% : :-ORG I ORGANIZATION
<ORGTYPE~o: - /E( 7)/ISAN I SEQUENTIAl SAXir- IDESEUTIAL I POST MUL
cE2IDHAR::- /E(74)/ (ENDCHAR> /STMTINC/
(ENDCHAR),: -- /SVENDC/
(STRINGCONST2 ::-/OCHARSTR/

* (NAME) : /NANKREC/
* - cINl'EGER,>: :-/INTREC/

cIS>: - IS I - I ARE
FriLESTW!, p- (FILE), /SVFUOV /I4MXNII'/ (SONDESC.%

cFILEDESC> <STORAGEDESC> /STDEV/
o cSONDESC.::-( <ITEMLIST> )

<RECG> (NAME] < Is).] c ((ITEM),()
(OWFPILESTNT2: (FILL> (NAME] ((cIS] /E(56)/ /MEMINIT/ /IN'IWJAR/

(DCTJNVAR> /SVFTW
<RECG> (NAME] (15S] I(] (ITEM), C1]
<FILEDESC> /STIFILE/

* STORAGEDESC> /STDEV/ (cENDCHARR2
(FPILEDESC>::- (STORAGE (NAME] ((IS)] /E(44)/ cNAME> /SVSTNN/]

C<(KEY) (NM](IS>] /E(45)/ (NAME) /SVKEY/]
(<ORG < (dS2 cORGT'LPE> /SVORG3/]

<STORAGEDESC) : (DEVICE (C<IS] <DEVICE>]J /SJDEV/
[RECORD /E(57 )/](FORMT £(<IS) ] cRECP MT,.*/SVR.ECF/
<BLXK4ECVOL2.

* (TAPEDESC>] (cDISKDESC).J
HARDWARE] (SOFNARRE]

<DEVICE.%: /E( 61)/ TAPE IDISIC/SETDEVB/
CARD /SETDEVC/ IPRINTER /SETDEVP/

IPUNCH /SETDEVU/ TrM4NAL /SETDEVT/
(RECFMT). -: - /E(69)/ FIXED IV'ARIABIE IVARSPANNED IUNDEFINED

cBIJaECVOL> -: -
(MAX] /1(70)/ /1(71)/ BLOCKSIZE ((IS)] tINTEGERi2 /SVBLK/ )
INAXE 59)/] FRECORDSIZE (-cIS.] /1(72 )/c NTEGER)/SVCSZ/1

* (VOLUME (NME (cI5] /E(60)/ (NAME)/SVVOL/ C,/E(60)/,cNAMEJ%* J
<TAPEDESC) C (TRACKS) (15S)] /1(66)/<NOTRKS3/SVTRK2/J

k~~ PARITY (C<15] /E(66)/ (PARI:TY)/5VPAR2/1
DENSITY (cIS).] /E(66)/ (DENSITY) /SVDEN2/]
(TAPE] LABEL (d15.] <LABELTYPE>/SVLAB2/]

START (FILE] (IS)] /E(66)/ <INTEGER> /SVSTFL2/1
(CCHAR] CODE (CIS.] (cCODE). /SVCC/]

<TRACS> NO:K I s'pc TRACKS
* (LAt~BELTYPE> /1(59 / IBMSTD IANSISTD-I NONE-, BYASS
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c DISKDESC) : (UNIT C<IS> /E(9)/ cT'fPEDSK> /SVUNIT2/1
(cCYLINDERS)./SVUCYL/ (cIS-] /E(66)/ crNTEGER).

/SVQTT2/J
cCYLINDERS - NOCYLS I CYLINDERS
<HARDWARE,::- (COMPUTER] MODEL (CIS>] -cANY>
cSOPNWARE>:: ILOPERATING] SYSTEM (CIS).] 4cANY~J



APPENDIX C

WA RNING AND ERROR MESSAGES GENERATED BY THE CONFIGURATOR

Cl. ERROR/WARNING MESSAGES FOR SYNTAX ANALYSIS:

1. *WARNG* (LEXI) THE IDENTIFIER "text..." IS TRUNCATED TO 10
CHARACTERS.

2. *ERROR* (LEX2) THE LAST STATEMENT DOES NOT TERMINATE WITH "-/".
3. *ERRR* (LEX3) THE LAST STATEMENT DOES NOT TERMINATE WITH ";
4. *ERROR* (LEX4) CANNOT FIND THE NAMED CONFIGURATION INPUT FILE.
5. *ERROR* (SAPI) MISSING ';' AT END OF A STATEMENT. STMT: stmt#
6. *ERROR* (SAP2) ILLEGALLY STRUCTURED NAMES FOUND. STMT: stmt*
7.*ERROR* (SAP3) ILLEGALLY STRUCTURED STATEMENT. STMT: Stmt#
8.-ERROR* (SAP4) MISSING ':' AFTER 'F' OR 'M'. STMT: stmt#
9. *ER* (SAPS) ILLEGAL NAME. STMT: stmt*

10. *ERROR* (SAP6) ILLEGAL FILE ORGANIZATION. STMT: stmt*
11.*ERROR* (SAP7) RECORD SIZE MUST BE AN INTEGERI. STMT: stmt#
12. *ERROR* (SAPS) VERSION NUMBER MUST BE AN INTEGERI. STNT: stmt*
13.*ERROR-(SAP9) ILLEGAL NAME FOUND IN A SYNONYM STATEMENT.

STMT: stint#
14. *ERROR* (SAPIO) MISSING ',' IN BETWEEN TWO NAMES IN A SYNONYM

STATEMENT. STMT: stmtS
15. -ERROR* (SAP11) MISSING TAGET NAME OF AN ARROW IN A PATH STATEMENT
16. *ERROR* (SAP12) ILLEGAL KEYWORD. EXPECT: "TYP", "ORG", OR "TYPE"

C2. ERROR/WARNING MESSAGES FOR CONFIGURATION GRAPH CONSTRUCTION:

17. *ERROR*(CNFl) THE SYNONYM NAMES HAVE NO PHYSICAL NAME DEFINED:
- ... NAME.... ORG. .RECSZ. .. FULLPHYSICALNAME .....

namel orgl rec.sizel pnamel
name2 org2 rec. size2 pname2
name3 org3 rec.size3 pname3

18. *ERROR*(CNF2) CONFLiCT ATTRIB?E( S) FOUND FOR SYNONYM FILES:
- ... NAME.... ORG.. RECSZ. .. FULLPHYSICALNAME.....

namel orgl rec. sizel pnamel
name2 org2 rec. Size2 pname2
name3 org3 rec.size3 pname3

19.-ERROR*(CNF3) AN M-M PATTERN FOUND IN LINE: stint_no
20. -ERROR*(CNF4) A MODULE KANE CANNOT BE SUIXED.

ILLEGAL NAME: name
21. *ER*( CNF5) ILLEGAL MODULE NAME. THE NAME HAS BEEN USED

FOR A FILE. name
22. *ERROR*(CNF6) A REDUNDANT AND CONILICTING STATEMENT FOUND FOR

- 244 -
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MODULE: name, THE CONFILICTING PHYSICAL NAMES:
navel, name2, STMT: stmt#

23. WERROR*(CN7) A REDUNDANT AND CONFILICTING STATEMENT FOUND FOR
MODULE: name. THE CONFILICTING LOCATIONS:
locationllocation2, STNT: stmt*

24. -ERROR*(CNF8) A REDUNDANT AND CONILICTING STATEMENT FOUND FOR
MODULE: name, THE CONFILICTING DEVICES:
devicel,device2, STNT: stmt#

25. -ERROR-(CN9) A REDUNDANT AND CONFILICTING STATEMENT FOUND FOR
MODULE: name. THE CONFILICTING DIRECTORIES:
directoryl,directory2, STNT: stmt

26. WERROR*(CN01) A REDUNDANT AND CONFILICTING STATEMENT FOUND FOR
MODULE: name. THE CONFILICTING SUFIXES:
sufixl, sufix2, STMT: stmt

27. -ERROR*(CN 711) A REDUNDANT AND CONFILICTING STATEMENT FOUND FOR
MODULE: name. THE CONFILICTING VERSIONS:
versionl, version2, STMT: stmt#

28. -ERROR-(CNF12) A REDUNDANT AND CONFILICTING STATEMENT FOUND FOR
MODULE: name. THE CONFILICTING ORGANIZATIONS:
orgl, org2,STNT: stmt#

29. -ERROR*(CNF13) A REDUNDANT AND CONFILICTING STATEMENT FOUND FOR
MODULE: name. THE CONFILICTING STATUSES:
statusi, status2, STNT:stmt#

30. -ERROR-(CN1I4) ILLEGAL FILE NAME. THE NAME HAS BEEN USED FOR A
MODULE: name, STMT: stmt#

31.-ERROR-(CNF15) A REDUNDANT AND CONIILICTING STATEMENT FOUND FOR
FILE: name. THE CONFILICTING PHYSICAL NAMES:
pnamel,pname2, STT: stmnt

32. *ERROR*(CNF16) A REDUNDANT AND CONFILICTING STATEMENT FOUND FOR
FILE: name. THE CONFILICTING LOCATIONS:
locationl, location2,STMT: stmt*

33. 0ERROR-(CN17) A REDUNDANT AND CONFILICTING STATEMENT FOUND FOR
FILE: name. THE CONFILICTING DEVICES:
deviceldevice2. STMT* stmt

34. -EROR(CN118) A REDUNDANT AND CONFILICTING STATEMENT FOUND FOR
FILE: name. THE CONPILICTING DIRECTORIES:
directoryl, directory2, STMT: stmt#

35.*ERROR-(CN19) A REDUNDANT AND CONPILICTING STATEMENT FOUND FOR
FILE: name. THE CONFILICTING SUFIXES:
sufixi, sufix2, STMT: sbtwt

36. *ERROR(CNF20) A REDUNDANT AND CONFILICTING STATEMENT FOUND
FOR FILE: name. THE CONFILICTING VERSIONS:
versionl, version2, STMT: stitS

37. -ERROR-(CN21) A REDUNDANT AND CONFILICTING STATEMENT FOUND FOR
FILE: name. THE CONFILICTING ORGANIZATIONS:
orgl, org2, STHT: stit*

38. -ERROR*(CNF22) A REDUNDANT AND CONFILICTING STATEMENT FOUND FOR
FILE: name. THE CONFILICTING RECORD SIZES:
rec.sizel, rec.size2, STMT: stbtt

39.-WARNG(CNF23) PHYSICAL NAME TYPE LENGTH EXCEDS 3 (type).
TRUNCATED.

40. *ERROR*(CN24) UNDEFINED NAME FOUND IN A SYNONYM STATEMENT:
name, STMT: stmt

41. *ERROR*(CN126) ILLEGAL SYNONYM STATEMENT (NO DEFINED SYMBOL
HAS BEEN FOUND). STMT: stnmt

42. *ERROR(CNF27) DIFFERENT NODE TYPES SPECIFIED FOR SYNONYM NAMES:
...NAME... TYPE.

namel typel
name2 type2

43. *ERROR*(CN29) WRONG STATEMENT ORDER. NO PATH STATEMENT
CAN BE PLACED AFTER SYNONYM( S).

C3. ERROR/WARNING MESSAGES DURING COMPLETENESS ANALYSIS

*1
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44. ERROR* (CMP) AN ISOLATED FILE NODE FOUND: name
45. *WARNG* (CMP2) INCOMPLETE DEFINITION FOUND FOR A

"MAIL" OR "POST" FILE: name
46.*ERROR- (CMP3) MORE THAN ONE PRODUCER FOUND FOR A POST

FILE: name
47 *RROR* (CMP4) MORE THAN ONE PRODUCER FOUND OR A SAN

FILE: name
48. WERROR* (CMPS) AN ISOLATED MODULE NODE FOUND: name
49.-ERRORW (CMP6) MORE THAN ONE PRODUCER OR CONSUMBER

FOUND FOR A "MAN" MODULE: name
50.*ERROR* (CMP7) A "MAN" MODULE MUIST COMMUNICATE WITH

"MAIL" FILES. (name)
51. *ERROR* (CMP9) THE FILE(S) CONSUMED OR PRODUCED BY

MODULE: name ARE NOT CO-LOCATED.

C4. ERRORWARNING MESSAGES DURING SCHEDULING AND DOCUMENTATION
GENERATION

52. *ERROR* (RPT2) MORE THAN ONE PRODUCER FOUND FOR A SEQ
FILE "name".

53. *'WRNG* (RPT3) MORE THAN ONE CONSUMER POUND FOR A SEQ
FILE "name". THEY ARE SCHEDULED SEQUENTIALLY.

54.-ERROR (RPT5) MORE THAN ONE CONSUMER FOUND FOR A MAIL
FILE "name".

55. *ERROR* (RPT6) MORE THAN ONE PRODUCER FOUND FOR A POST
FILE "name".

56. *WMRNGW (RPT7) A MULTI-NODE MAXIMALLY STRONGLY CONNECTED
COMPONENT FOUND IN CONFIGURATION CONSISTS OF:
- element namel
- element name2

THE PZLE NODES MIST HKE A VIRTUAL DIMENSION.
57. *ERROR* (SEQ1) A MAXIMALLY STRONGLY CONNECTED

COMPONEN CONTAINS SEQUENTIAL
EDGES-
- Copnent 1: elel<SEQ),, ele2,
- Component 2: elel, ele2<SEQ,.
- Component 3: elel, ele2, ...

58. ERORw (SCD1) CYCLES FOUND IN A SCHEDULE GRAPH
CONSISTING OF:
-PAR NODE: elel, ele2<SEQ3,...
- PAR NODE: elel, ele2,...
- PAR NODE: elel<SEQ), ele2....

II
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Note.

Every message is associated with a unique code which is used to

identify the producer of the message. The following list shown the

correspondence between the codes and programs.

Code Program name Description

CNF CON Main Controler
LEX LEX Lexical Analyzer
SAP SAP Syntax Analyzer
CMP CMPANA Completeness Checking
SEQ SEQCK Consistency Checking
SCD SCHEDULE Scheduling
RPT GRPT Documentation

0
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